Do you want to publish a course? Click here

Effects of electrical charging on the mechanical Q of a fused silica disk

85   0   0.0 ( 0 )
 Added by Gregory M. Harry
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the effects of an electrical charge on mechanical loss of a fused silica disk. A degradation of Q was seen that correlated with charge on the surface of the sample. We examine a number of models for charge damping, including eddy current damping and loss due to polarization. We conclude that rubbing friction between the sample and a piece of dust attracted by the charged sample is the most likely explanation for the observed loss.



rate research

Read More

Current interferometric gravitational wave detectors (IGWDs) are operated at room temperature with test masses made from fused silica. Fused silica shows very low absorption at the laser wavelength of 1064 nm. It is also well suited to realize low thermal noise floors in the detector signal band since it offers low mechanical loss, i. e. high quality factors (Q factors) at room temperature. However, for a further reduction of thermal noise, cooling the test masses to cryogenic temperatures may prove an interesting technique. Here we compare the results of Q factor measurements at cryogenic temperatures of acoustic eigenmodes of test masses from fused silica and its crystalline counterpart. Our results show that the mechanical loss of fused silica increases with lower temperature and reaches a maximum at 30 K for frequencies of slightly above 10 kHz. The losses of crystalline quartz generally show lower values and even fall below the room temperature values of fused silica below 10 K. Our results show that in comparison to fused silica, crystalline quartz has a considerably narrower and lower dissipation peak on cooling and thus has more promise as a test mass material for IGDWs operated at cryogenic temperatures. The origin of the different Q factor versus temperature behavior of the two materials is discussed.
The DIRC is a new type of Cherenkov detector that is successfully operating as the hadronic particle identification system for the BABAR experiment at SLAC. The fused silica bars that serve as the DIRCs Cherenkov radiators must transmit the light over long optical pathlengths with a large number of internal reflections. This imposes a number of stringent and novel requirements on the bar properties. This note summarizes a large amount of R&D that was performed both to develop specifications and production methods and to determine whether commercially produced bars could meet the requirements. One of the major outcomes of this R&D work is an understanding of methods to select radiation hard and optically uniform fused silica material. Others include measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to surface contaminants, development of radiator support methods, and selection of good optical glue.
131 - Michael R.R. Good 2018
A scalar field gravitational analog of the Reissner-Nordstrom solution is investigated. The nonlinear Newtonian model has an upper-limit of charge for a central mass which agrees with the general relativistic condition required for the existence of the black hole horizon. The maximum limit for accumulation by bombardment of charged particles is found. The aim is to investigate the resulting physics after severing the effects of curvature from the effects of energy-mass equivalence.
We point out a misleading treatment in a recent paper published in this Journal [Eur. Phys. J. C (2018)78:106] regarding solutions for the Schr{o}dinger equation with a anharmonic oscillator potential embedded in the background of a cosmic string mapped into biconfluent Heun equation. This fact jeopardizes the thermodynamical properties calculated in this system.
In this paper, we re-examine charged Q-clouds around spherically symmetric, static black holes. In particular, we demonstrate that for fixed coupling constants two different branches of charged scalar clouds exist around Schwarzschild black holes. This had not been noticed previously. We find that the new solutions possess a hard wall at maximal possible gauge coupling. This wall separates the interior (containing the black hole horizon), in which the scalar field is trapped in the false vacuum, from the true vacuum exterior. When taking back-reaction onto the space-time into account, we find that at maximal possible back reaction, the black hole solutions corresponding to these two branches either become extremal black holes with diverging scalar field derivative on the horizon or inflating black holes with a second, cosmological horizon which - outside this second horizon - correspond to extremal Reissner-Nordstrom black holes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا