We propose a novel BF-type formulation of real four-dimensional gravity, which generalizes previous models. In particular, it allows for an arbitrary Immirzi parameter. We also construct the analogue of the Urbantke metric for this model.
It is argued that, using the black hole area entropy law together with the Boltzmann-Gibbs statistical mechanics and the quasinormal modes of the black holes, it is possible to determine univocally the lowest possible value for the spin $j$ in the context of the Loop Quantum Gravity theory which is $j_{min}=1$. Consequently, the value of Immirzi parameter is given by $gamma = ln 3/(2pisqrt{2})$. In this paper, we have shown that if we use Tsallis microcanonical entropy rather than Boltzmann-Gibbs framework then the minimum value of the label $j$ depends on the nonextensive $q$-parameter and may have values other than $j_{min}=1$.
This article presents an extended model of gravity obtained by gauging the AdS-Mawell algebra. It involves additional fields that shift the spin connection, leading effectively to theory of two independent connections. Extension of algebraic structure by another tetrad gives rise to the model described by a pair of Einstein equations.
Following recent works on corner charges we investigate the boundary structure in the case of the theory of gravity formulated as a constrained BF theory. This allows us not only to introduce the cosmological constant, but also explore the influence of the topological terms present in the action of this theory. Established formulas for charges resemble previously obtained ones, but we show that they are affected by the presence of the cosmological constant and topological terms. As an example we discuss the charges in the case of the AdS--Schwarzschild solution and we find that the charges give correct values.
In Regge calculus the space-time manifold is approximated by certain abstract simplicial complex, called a pseudo-manifold, and the metric is approximated by an assignment of a length to each 1-simplex. In this paper for each pseudomanifold we construct a smooth manifold which we call a manifold with defects. This manifold emerges from the purely combinatorial simplicial complex as a result of gluing geometric realizations of its n-simplices followed by removing the simplices of dimension n-2. The Regge geometry is encoded in a boundary data of a BF-theory on this manifold. We construct an action functional which coincides with the standard BF action for suitably regular manifolds with defects and fields. On the other hand, the action evaluated at solutions of the field equations satisfying certain boundary conditions coincides with an evaluation of the Regge action at Regge geometries defined by the boundary data. As a result we trade the degrees of freedom of Regge calculus for discrete degrees of freedom of topological BF theory.
We show that if one starts with a Universe with some matter and a cosmological constant, then quantum mechanics naturally induces an attractive gravitational potential and an effective Newtons coupling. Thus gravity is an emergent phenomenon and what should be quantized are the fundamental degrees of freedom from which it emerges.