It is argued that, using the black hole area entropy law together with the Boltzmann-Gibbs statistical mechanics and the quasinormal modes of the black holes, it is possible to determine univocally the lowest possible value for the spin $j$ in the context of the Loop Quantum Gravity theory which is $j_{min}=1$. Consequently, the value of Immirzi parameter is given by $gamma = ln 3/(2pisqrt{2})$. In this paper, we have shown that if we use Tsallis microcanonical entropy rather than Boltzmann-Gibbs framework then the minimum value of the label $j$ depends on the nonextensive $q$-parameter and may have values other than $j_{min}=1$.
Loop Quantum Gravity (LQG) is a theory that proposes a way to model the behavior of the spacetime in situations where its atomic characteristic arises. Among these situations, the spacetime behavior near the Big Bang or black holes singularity. The detection of gravitational waves, on the other hand, has opened the way to new perspectives in the investigation of the spacetime structure. In this work, by the use of a WKB method introduced by Schutz and Will cite{Schutz:1985zz}, and after improved by Iyer and Will cite{s.iyer-prd35}, we study the gravitational wave spectrum emitted by loop quantum black holes, which correspond to a quantized version of the Schwarzschild spacetime by LQG techniques. From the results obtained, loop quantum black holes have been shown stable under axial gravitational perturbations.
In this work, we have calculated the polar gravitational quasinormal modes for a quantum corrected black hole model, that arises in the context of Loop Quantum Gravity, known as Self-Dual Black Hole. In this way, we have calculated the characteristic frequencies using the WKB approach, where we can verify a strong dependence with the Loop Quantum Gravity parameters. At the same time we check that the Self-Dual Black Hole is stable under polar gravitational perturbations, we can also verify that the spectrum of the polar quasinormal modes differs from the axial one cite{Cruz:2015bcj}. Such a result tells us that isospectrality is broken in the context of Self Dual Black Holes.
We propose a novel BF-type formulation of real four-dimensional gravity, which generalizes previous models. In particular, it allows for an arbitrary Immirzi parameter. We also construct the analogue of the Urbantke metric for this model.
In this paper, we study the quasinormal modes of the massless Dirac field for charged black holes in Rastall gravity. The spherically symmetric black hole solutions in question are characterized by the presence of a power-Maxwell field, surrounded by the quintessence fluid. The calculations are carried out by employing the WKB approximations up to the thirteenth order, as well as the matrix method. The temporal evolution of the quasinormal modes is investigated by using the finite difference method. Through numerical simulations, the properties of the quasinormal frequencies are analyzed, including those for the extremal black holes. Among others, we explore the case of a second type of extremal black holes regarding the Nariai solution, where the cosmical and event horizon coincide. The results obtained by the WKB approaches are found to be mostly consistent with those by the matrix method. It is demonstrated that the black hole solutions for Rastall gravity in asymptotically flat spacetimes are equivalent to those in Einstein gravity, featured by different asymptotical spacetime properties. As one of its possible consequences, we also investigate the behavior of the late-time tails of quasinormal models in the present model. It is found that the asymptotical behavior of the late-time tails of quasinormal modes in Rastall theory is governed by the asymptotical properties of the spacetimes of their counterparts in Einstein gravity.
The detection of gravitational waves from compact binary mergers by the LIGO/Virgo collaboration has, for the first time, allowed us to test relativistic gravity in its strong, dynamical and nonlinear regime, thus opening a new arena to confront general relativity (and modifications thereof) against observations. We consider a theory which modifies general relativity by introducing a scalar field coupled to a parity-violating curvature term known as dynamical Chern-Simons gravity. In this theory, spinning black holes are different from their general relativistic counterparts and can thus serve as probes to this theory. We study linear gravito-scalar perturbations of black holes in dynamical Chern-Simons gravity at leading-order in spin and (i) obtain the perturbed field equations describing the evolution of the perturbed gravitational and scalar fields, (ii) numerically solve these equations by direct integration to calculate the quasinormal mode frequencies for the dominant and higher multipoles and tabulate them, (iii) find strong evidence that these rotating black holes are linearly stable, and (iv) present general fitting functions for different multipoles for gravitational and scalar quasinormal mode frequencies in terms of spin and Chern-Simons coupling parameter. Our results can be used to validate the ringdown of small-spin remnants of numerical relativity simulations of black hole binaries in dynamical Chern-Simons gravity and pave the way towards future tests of this theory with gravitational wave ringdown observations