No Arabic abstract
Previous work in the context of natural language querying of temporal databases has established a method to map automatically from a large subset of English time-related questions to suitable expressions of a temporal logic-like language, called TOP. An algorithm to translate from TOP to the TSQL2 temporal database language has also been defined. This paper shows how TOP expressions could be translated into a simpler logic-like language, called BOT. BOT is very close to traditional first-order predicate logic (FOPL), and hence existing methods to manipulate FOPL expressions can be exploited to interface to time-sensitive applications other than TSQL2 databases, maintaining the existing English-to-TOP mapping.
As modern deep networks become more complex, and get closer to human-like capabilities in certain domains, the question arises of how the representations and decision rules they learn compare to the ones in humans. In this work, we study representations of sentences in one such artificial system for natural language processing. We first present a diagnostic test dataset to examine the degree of abstract composable structure represented. Analyzing performance on these diagnostic tests indicates a lack of systematicity in the representations and decision rules, and reveals a set of heuristic strategies. We then investigate the effect of the training distribution on learning these heuristic strategies, and study changes in these representations with various augmentations to the training set. Our results reveal parallels to the analogous representations in people. We find that these systems can learn abstract rules and generalize them to new contexts under certain circumstances -- similar to human zero-shot reasoning. However, we also note some shortcomings in this generalization behavior -- similar to human judgment errors like belief bias. Studying these parallels suggests new ways to understand psychological phenomena in humans as well as informs best strategies for building artificial intelligence with human-like language understanding.
Language models are at the heart of numerous works, notably in the text mining and information retrieval communities. These statistical models aim at extracting word distributions, from simple unigram models to recurrent approaches with latent variables that capture subtle dependencies in texts. However, those models are learned from word sequences only, and authors identities, as well as publication dates, are seldom considered. We propose a neural model, based on recurrent language modeling, which aims at capturing language diffusion tendencies in author communities through time. By conditioning language models with author and temporal vector states, we are able to leverage the latent dependencies between the text contexts. This allows us to beat several temporal and non-temporal language baselines on two real-world corpora, and to learn meaningful author representations that vary through time.
This paper presents the results of the RepEval 2017 Shared Task, which evaluated neural network sentence representation learning models on the Multi-Genre Natural Language Inference corpus (MultiNLI) recently introduced by Williams et al. (2017). All of the five participating teams beat the bidirectional LSTM (BiLSTM) and continuous bag of words baselines reported in Williams et al.. The best single model used stacked BiLSTMs with residual connections to extract sentence features and reached 74.5% accuracy on the genre-matched test set. Surprisingly, the results of the competition were fairly consistent across the genre-matched and genre-mismatched test sets, and across subsets of the test data representing a variety of linguistic phenomena, suggesting that all of the submitted systems learned reasonably domain-independent representations for sentence meaning.
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained completely from scratch to translate unseen sentences. Our method consists of a pyramidal-bidirectional recurrent network combined with a convolutional network to output sentence-level spectrograms in the target language. Empirically, our model achieves competitive performance with state-of-the-art methods on multiple languages and can generalize to unseen speakers.
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representations learned by these networks. We propose here a novel interpretation approach that relies on the only processing system we have that does understand language: the human brain. We use brain imaging recordings of subjects reading complex natural text to interpret word and sequence embeddings from 4 recent NLP models - ELMo, USE, BERT and Transformer-XL. We study how their representations differ across layer depth, context length, and attention type. Our results reveal differences in the context-related representations across these models. Further, in the transformer models, we find an interaction between layer depth and context length, and between layer depth and attention type. We finally hypothesize that altering BERT to better align with brain recordings would enable it to also better understand language. Probing the altered BERT using syntactic NLP tasks reveals that the model with increased brain-alignment outperforms the original model. Cognitive neuroscientists have already begun using NLP networks to study the brain, and this work closes the loop to allow the interaction between NLP and cognitive neuroscience to be a true cross-pollination.