No Arabic abstract
Let $S_{N}(P)$ be the poset obtained by adding a dummy vertex on each diagonal edge of the $N$s of a finite poset $P$. We show that $S_{N}(S_{N}(P))$ is $N$-free. It follows that this poset is the smallest $N$-free barycentric subdivision of the diagram of $P$, poset whose existence was proved by P.A. Grillet. This is also the poset obtained by the algorithm starting with $P_0:=P$ and consisting at step $m$ of adding a dummy vertex on a diagonal edge of some $N$ in $P_m$, proving that the result of this algorithm does not depend upon the particular choice of the diagonal edge choosen at each step. These results are linked to drawing of posets.
In this note I provide two extensions of a particular case of the classical Poncelet theorem.
In this note, we prove a tight lower bound on the joint entropy of $n$ unbiased Bernoulli random variables which are $n/2$-wise independent. For general $k$-wise independence, we give new lower bounds by adapting Navon and Samorodnitskys Fourier proof of the `LP bound on error correcting codes. This counts as partial progress on a problem asked by Gavinsky and Pudlak.
A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our $O(nm)$-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our $O(n^{2.5}+nm)$-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.
The class of all even-hole-free graphs has unbounded tree-width, as it contains all complete graphs. Recently, a class of (even-hole, $K_4$)-free graphs was constructed, that still has unbounded tree-width [Sintiari and Trotignon, 2019]. The class has unbounded degree and contains arbitrarily large clique-minors. We ask whether this is necessary. We prove that for every graph $G$, if $G$ excludes a fixed graph $H$ as a minor, then $G$ either has small tree-width, or $G$ contains a large wall or the line graph of a large wall as induced subgraph. This can be seen as a strengthening of Robertson and Seymours excluded grid theorem for the case of minor-free graphs. Our theorem implies that every class of even-hole-free graphs excluding a fixed graph as a minor has bounded tree-width. In fact, our theorem applies to a more general class: (theta, prism)-free graphs. This implies the known result that planar even hole-free graph have bounded tree-width [da Silva and Linhares Sales, Discrete Applied Mathematics 2010]. We conjecture that even-hole-free graphs of bounded degree have bounded tree-width. If true, this would mean that even-hole-freeness is testable in the bounded-degree graph model of property testing. We prove the conjecture for subcubic graphs and we give a bound on the tree-width of the class of (even hole, pyramid)-free graphs of degree at most 4.
We propose a new ternary infinite (even full-infinite) square-free sequence. The sequence is defined both by an iterative method and by a direct definition. Both definitions are analogous to those of the Thue-Morse sequence. The direct definition is given by a deterministic finite automaton with output. In short, the sequence is automatic.