We propose the deterministic rate equation of three-species in the reaction - diffusion system. For this case, our purpose is to carry out the decay process in our three-species reaction-diffusion model of the form $A+B+Cto D$. The particle density and the global reaction rate are also shown analytically and numerically on a two-dimensional square lattice with the periodic boundary conditions. Especially, the crossover of the global reaction rate is discussed in both early-time and long-time regimes.
We study the decay process for the reaction-diffusion process of three species on the small-world network. The decay process is manipulated from the deterministic rate equation of three species in the reaction-diffusion system. The particle density and the global reaction rate on a two dimensional small-world network adding new random links is discussed numerically, and the global reaction rate before and after the crossover is also found by means of the Monte Carlo simulation. The time-dependent global reaction rate scales as a power law with the scaling exponent 0.66 at early time regime while it scales with -0.50 at long time regime, in all four cases of the added probability $p=0.2-0.8$. Especially, our result presented is compared with the numerical calculation of regular networks.
The change from the diffusion-limited to the reaction-limited cooperative behaviour in reaction-diffusion systems is analysed by comparing the universal long-time behaviour of the coagulation-diffusion process on a chain and on the Bethe lattice. On a chain, this model is exactly solvable through the empty-interval method. This method can be extended to the Bethe lattice, in the ben-Avraham-Glasser approximation. On the Bethe lattice, the analysis of the Laplace-transformed time-dependent particle-density is analogous to the study of the stationary state, if a stochastic reset to a configuration of uncorrelated particles is added. In this stationary state logarithmic corrections to scaling are found, as expected for systems at the upper critical dimension. Analogous results hold true for the time-integrated particle-density. The crossover scaling functions and the associated effective exponents between the chain and the Bethe lattice are derived.
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.
Starting from our recent chemical master equation derivation of the model of an autocatalytic reaction-diffusion chemical system with reactions $U+2V {stackrel {lambda_0}{rightarrow}}~ 3 V;$ and $V {stackrel {mu}{rightarrow}}~P$, $U {stackrel { u}{rightarrow}}~ Q$, we determine the effects of intrinsic noise on the momentum-space behavior of its kinetic parameters and chemical concentrations. We demonstrate that the intrinsic noise induces $n rightarrow n$ molecular interaction processes with $n geq 4$, where $n$ is the number of molecules participating of type $U$ or $V$. The momentum dependences of the reaction rates are driven by the fact that the autocatalytic reaction (inelastic scattering) is renormalized through the existence of an arbitrary number of intermediate elastic scatterings, which can also be interpreted as the creation and subsequent decay of a three body composite state $sigma = phi_u phi_v^2$, where $phi_i$ corresponds to the fields representing the densities of $U$ and $V$. Finally, we discuss the difference between representing $sigma$ as a composite or an elementary particle (molecule) with its own kinetic parameters. In one dimension we find that while they show markedly different behavior in the short spatio-temporal scale, high momentum (UV) limit, they are formally equivalent in the large spatio-temporal scale, low momentum (IR) regime. On the other hand in two dimensions and greater, due to the effects of fluctuations, there is no way to experimentally distinguish between a fundamental and composite $sigma$. Thus in this regime $sigma$ behave as an entity unto itself suggesting that it can be effectively treated as an independent chemical species.
The reversible A <-> B reaction-diffusion process, when species A and B are initially mixed and diffuse with different diffusion coefficients, is investigated using the boundary layer function method. It is assumed that the ratio of the characteristic time of the reaction to the characteristic time of diffusion is taken as a small parameter of the task. It was shown that diffusion-reaction process can be considered as a quasi-equilibrium process. Despite this fact the contribution of the reaction in changes of the species concentration is comparable with the diffusion contributions. Moreover the ratios of the reaction and diffusion contributions are independent of time and coordinate. The dependence of the reaction rate on the initial species distribution is analyzed. It was firstly obtained that the number of the reaction zones is determined by the initial conditions and changes with time. The asymptotic long-time behaviour of the reaction rate also dependents on the initial distribution.