Do you want to publish a course? Click here

Quasi one dimensional $^4$He inside carbon nanotubes

118   0   0.0 ( 0 )
 Added by Jordi Boronat
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report results of diffusion Monte Carlo calculations for both $^4$He absorbed in a narrow single walled carbon nanotube (R = 3.42 AA) and strictly one dimensional $^4$He. Inside the tube, the binding energy of liquid $^4$He is approximately three times larger than on planar graphite. At low linear densities, $^4$He in a nanotube is an experimental realization of a one-dimensional quantum fluid. However, when the density increases the structural and energetic properties of both systems differ. At high density, a quasi-continuous liquid-solid phase transition is observed in both cases.



rate research

Read More

Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL) which has now been observed in a number of experimental systems. Interactions are even more important at low carrier density, and in the limit when the long-ranged Coulomb potential is the dominant energy scale, the electron liquid is expected to become a periodically ordered solid known as the Wigner crystal. In 1D, the Wigner crystal has been predicted to exhibit novel spin and magnetic properties not present in an ordinary LL. However, despite recent progress in coupled quantum wires, unambiguous experimental demonstration of this state has not been possible due to the role of disorder. Here, we demonstrate using low-temperature single-electron transport spectroscopy that a hole gas in low-disorder carbon nanotubes with a band gap is a realization of the 1D Wigner crystal. Our observation can lead to unprecedented control over the behavior of the spatially separated system of carriers, and could be used to realize solid state quantum computing with long coherence times.
Fluids confined within narrow channels exhibit a variety of phases and phase transitions associated with their reduced dimensionality. In this review paper, we illustrate the crossover from quasi-one dimensional to higher effective dimensionality behavior of fluids adsorbed within different carbon nanotubes geometries. In the single nanotube geometry, no phase transitions can occur at finite temperature. Instead, we identify a crossover from a quasi-one dimensional to a two dimensional behavior of the adsorbate. In bundles of nanotubes, phase transitions at finite temperature arise from the transverse coupling of interactions between channels.
We report measurements of the temperature and gate voltage dependence for individual bundles (ropes) of single-walled nanotubes. When the conductance is less than about e^2/h at room temperature, it is found to decrease as an approximate power law of temperature down to the region where Coulomb blockade sets in. The power-law exponents are consistent with those expected for electron tunneling into a Luttinger liquid. When the conductance is greater than e^2/h at room temperature, it changes much more slowly at high temperatures, but eventually develops very large fluctuations as a function of gate voltage when sufficiently cold. We discuss the interpretation of these results in terms of transport through a Luttinger liquid.
The nature of the primary photoexcitations in semiconducting single-walled carbon nanotubes (S-SWCNTs) is of strong current interest. We have studied the emission spectra of S-SWCNTs and two different $pi$-conjugated polymers in solutions and films, and have also performed ultrafast pump-probe spectroscopy on these systems. The emission spectra relative to the absorption bands are very similar in S-SWCNTs and polymers, with redshifted photoluminescence in films showing exciton migration. The transient photoinduced absorptions (PAs) in SWCNTs and $pi$-conjugated polymers are also remarkably similar, with a low energy PA$_1$ and a higher energy PA$_2$ in all cases. Theoretical calculations of excited state absorptions within a correlated $pi$-electron Hamiltonian find the same excitonic energy spectrum for S-SWCNTs and $pi$-conjugated polymers, illustrating the universal features of quasi-one-dimensional excitons in carbon-based $pi$-conjugated systems. In both cases PA$_1$ is an excited state absorption from the optically allowed exciton to a two-photon exciton that occurs below the continuum band threshold. PA$_1$ therefore gives the lower limit of the binding energy of the lowest optical exciton. The binding energy of lowest exciton belonging to the widest S-SWCNTs with diameters $geq$ 1 nm in films is 0.3--0.4 eV, as determined by both experimental and theoretical methods.
Diffusion Monte Carlo calculations on the adsorption of $^4$He in open-ended single walled (10,10) nanotubes are presented. We have found a first order phase transition separating a low density liquid phase in which all $^4$He atoms are adsorbed close to the tube wall and a high density arrangement characterized by two helium concentric layers. The energy correction due to the presence of neighboring tubes in a bundle has also been calculated, finding it negligible in the density range considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا