No Arabic abstract
A path-integral representation is constructed for the Jahn-Teller polaron (JTP). It leads to a perturbation series that can be summed exactly by the diagrammatic Quantum Monte Carlo technique. The ground-state energy, effective mass, spectrum and density of states of the three-dimensional JTP are calculated with no systematic errors. The band structure of JTP interacting with dispersionless phonons, is found to be similar to that of the Holstein polaron. The mass of JTP increases exponentially with the coupling constant. At small phonon frequencies, the spectrum of JTP is flat at large momenta, which leads to a strongly distorted density of states with a massive peak at the top of the band.
This review summarizes recent developments in the study of fermionic quantum criticality, focusing on new progress in numerical methodologies, especially quantum Monte Carlo methods, and insights that emerged from recently large-scale numerical simulations. Quantum critical phenomena in fermionic systems have attracted decades of extensive research efforts, partially lured by their exotic properties and potential technology applications and partially awaked by the profound and universal fundamental principles that govern these quantum critical systems. Due to the complex and non-perturbative nature, these systems belong to the most difficult and challenging problems in the study of modern condensed matter physics, and many important fundamental problems remain open. Recently, new developments in model design and algorithm improvements enabled unbiased large-scale numerical solutions to be achieved in the close vicinity of these quantum critical points, which paves a new pathway towards achieving controlled conclusions through combined efforts of theoretical and numerical studies, as well as possible theoretical guidance for experiments in heavy-fermion compounds, Cu-based and Fe-based superconductors, ultra-cold fermionic atomic gas, twisted graphene layers, etc., where signatures of fermionic quantum criticality exist.
We present the first approximation free diagrammatic Monte Carlo study of a lattice polaron interacting with an acoustic phonon branch through the deformation potential. Weak and strong coupling regimes are separated by a self-trapping region where quantum resonance between various possible lattice deformations is seen in the ground state properties, spectral function, and optical conductivity. The unique feature of such polaron is the interplay between long- and short wavelength acoustic vibrations creating a composite phonon cloud and leading to persistent self-trapping due to the existence of multiple quasi-stable states. This results in a spectral response whose structure is much more complex than in any of the previously considered polaron models.
Exciton-polaron formation in one-dimensional lattice models with short or long-range carrier-phonon interaction is studied by quantum Monte Carlo simulations. Depending on the relative sign of electron and hole-phonon coupling, the exciton-polaron size increases or decreases with increasing interaction strength. Quantum phonon fluctuations determine the (exciton-)polaron size and yield translation-invariant states at all finite couplings.
Quantum Monte Carlo (QMC) simulations of correlated electron systems provide unbiased information about system behavior at a quantum critical point (QCP) and can verify or disprove the existing theories of non-Fermi liquid (NFL) behavior at a QCP. However, simulations are carried out at a finite temperature, where quantum-critical features are masked by finite temperature effects. Here we present a theoretical framework within which it is possible to separate thermal and quantum effects and extract the information about NFL physics at $T=0$. We demonstrate our method for a specific example of 2D fermions near a Ising-ferromagnetic QCP. We show that one can extract from QMC data the zero-temperature form of fermionic self-energy $Sigma (omega)$ even though the leading contribution to the self-energy comes from thermal effects. We find that the frequency dependence of $Sigma (omega)$ agrees well with the analytic form obtained within the Eliashberg theory of dynamical quantum criticality, and obeys $omega^{2/3}$ scaling at low frequencies. Our results open up an avenue for QMC studies of quantum-critical metals.
We discuss a projector Monte Carlo method for quantum spin models formulated in the valence bond basis, using the S=1/2 Heisenberg antiferromagnet as an example. Its singlet ground state can be projected out of an arbitrary basis state as the trial state, but a more rapid convergence can be obtained using a good variational state. As an alternative to first carrying out a time consuming variational Monte Carlo calculation, we show that a very good trial state can be generated in an iterative fashion in the course of the simulation itself. We also show how the properties of the valence bond basis enable calculations of quantities that are difficult to obtain with the standard basis of Sz eigenstates. In particular, we discuss quantities involving finite-momentum states in the triplet sector, such as the dispersion relation and the spectral weight of the lowest triplet.