Do you want to publish a course? Click here

Magnetic resonance in the antiferromagnetic and normal state of NH_3K_3C_60

93   0   0.0 ( 0 )
 Added by Mr. Ferenc Simon
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the magnetic resonance of NH_3K_3C_60 powders in the frequency range of 9 to 225 GHz. The observation of an antiferromagnetic resonance below the phase transition at 40 K is evidence for an antiferromagnetically ordered ground state. In the normal state, above 40 K, the temperature dependence of the spin-susceptibilty measured by ESR agrees with previous static measurements and is too weak to be explained by interacting localized spins in an insulator. The magnetic resonance line width has an unusual magnetic-field dependence which is large and temperature independent in the magnetically ordered state and decreases rapidly above the transition. These observations agree with the suggestion that NH_3K_3C_60 is a metal in the normal state and undergoes a Mott-Hubbard metal to insulator transition at 40 K.



rate research

Read More

Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-parallel spins. The revised spin model for BiFeO$_3$ contains two new single-ion anisotropy terms that violate rhombohedral symmetry and depend on the direction of the magnetic field.
Antiferromagnetic resonance (AFMR) of BaCu2Si2O7 and a microscopic theory of the magnetic anisotropy of spin 1/2 chain compounds with folded CuO3 geometry being in good agreement with the available data are presented. The AFMR studies at 4.2 K show the existence of two gaps (40 and 76 GHz) at zero magnetic field and of two spin re-orientation transitions for H||c. The microscopic origin of the two gaps is shown to be Hunds rule coupling which leads to a residual anisotropy beyond the compensation of the Dzyaloshinskii-Moriya term by the symmetric anisotropy which would be valid without Hunds coupling.
The interplay between multiple bands, sizable multi-band electronic correlations and strong spin-orbit coupling may conspire in selecting a rather unusual unconventional pairing symmetry in layered Sr$_{2}$RuO$_{4}$. This mandates a detailed revisit of the normal state and, in particular, the $T$-dependent incoherence-coherence crossover. Using a modern first-principles correlated view, we study this issue in the actual structure of Sr$_{2}$RuO$_{4}$ and present a unified and quantitative description of a range of unusual physical responses in the normal state. Armed with these, we propose that a new and important element, that of dominant multi-orbital charge fluctuations in a Hunds metal, may be a primary pair glue for unconventional superconductivity. Thereby we establish a connection between the normal state responses and superconductivity in this system.
The unconventional electronic ground state of Sr$_3$IrRuO$_7$ is explored via resonant x-ray scattering techniques and angle-resolved photoemission measurements. As the Ru content approaches $x=0.5$ in Sr$_3$(Ir$_{1-x}$Ru$_x$)$_2$O$_7$, intermediate to the $J_{eff}=1/2$ Mott state in Sr$_3$Ir$_2$O$_7$ and the quantum critical metal in Sr$_3$Ru$_2$O$_7$, a thermodynamically distinct metallic state emerges. The electronic structure of this intermediate phase lacks coherent quasiparticles, and charge transport exhibits a linear temperature dependence over a wide range of temperatures. Spin dynamics associated with the long-range antiferromagnetism of this phase show nearly local, overdamped magnetic excitations and an anomalously large energy scale of 200 meV---an energy far in excess of exchange energies present within either the Sr$_3$Ir$_2$O$_7$ or Sr$_3$Ru$_2$O$_7$ solid-solution endpoints. Overdamped quasiparticle dynamics driven by strong spin-charge coupling are proposed to explain the incoherent spectral features of the strange metal state in Sr$_3$IrRuO$_7$.
111 - D. W. Song , J. Li , D. Zhao 2018
In low-dimensional metallic systems, lattice distortion is usually coupled to a density-wave-like electronic instability due to Fermi surface nesting (FSN) and strong electron-phonon coupling. However, the ordering of other electronic degrees of freedom can also occur simultaneously with the lattice distortion thus challenges the aforementioned prevailing scenario. Recently, a hidden electronic reconstruction beyond FSN was revealed in a layered metallic compound BaTi2As2O below the structural transition temperature Ts ~ 200 K. The nature of this hidden electronic instability is under strong debate. Here, by measuring the local orbital polarization through 75As nuclear magnetic resonance experiment, we observe a p-d bond order between Ti and As atoms in BaTi2As2O single crystal. Below Ts, the bond order breaks both rotational and translational symmetry of the lattice. Meanwhile, the spin-lattice relaxation measurement indicates a substantial loss of density of states and an enhanced spin fluctuation in the bond-order state. Further first-principles calculations suggest that the mechanism of the bond order is due to the coupling of lattice and nematic instabilities. Our results strongly support a bond-order driven electronic reconstruction in BaTi2As2O and shed light on the mechanism of superconductivity in this family.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا