We have measured the low temperature conductance of a one-dimensional island embedded in a single mode quantum wire. The quantum wire is fabricated using the cleaved edge overgrowth technique and the tunneling is through a single state of the island. Our results show that while the resonance line shape fits the derivative of the Fermi function the intrinsic line width decreases in a power law fashion as the temperature is reduced. This behavior agrees quantitatively with Furusakis model for resonant tunneling in a Luttinger-liquid.
We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation $eta$ the weak link is always a relevant perturbation which suppresses transport strongly. At zero temperature the current voltage relation of the link is $Isim exp(-E_0/eV)$ where $E_0simeta/kappa$ and $kappa$ denotes the compressibility. At non-zero temperature $T$ the linear conductance is proportional to $exp(-sqrt{{cal C}E_0/k_BT})$. The decay of Friedel oscillation saturates for distance larger than $L_{eta}sim 1/eta $ from the impurity.
We study the tunneling density of states (TDOS) for a junction of three Tomonaga-Luttinger liquid wires. We show that there are fixed points which allow for the enhancement of the TDOS, which is unusual for Luttinger liquids. The distance from the junction over which this enhancement occurs is of the order of x = v/(2 omega), where v is the plasmon velocity and omega is the bias frequency. Beyond this distance, the TDOS crosses over to the standard bulk value independent of the fixed point describing the junction. This finite range of distances opens up the possibility of experimentally probing the enhancement in each wire individually.
We report Coulomb drag measurements between vertically-integrated quantum wires separated by a barrier only 15 nm wide. The temperature dependence of the drag resistance is measured in the true one-dimensional (1D) regime where both wires have less than one 1D subband occupied. As a function of temperature, an upturn in the drag resistance is observed in three distinct devices at a temperature $T^* sim 1.6$ K. This crossover in Coulomb drag behaviour is consistent with Tomonaga-Luttinger liquid models for the 1D-1D drag between quantum wires.
We demonstrate that an undoped two-dimensional carbon plane (graphene) whose bulk is in the integer quantum Hall regime supports a non-chiral Luttinger liquid at an armchair edge. This behavior arises due to the unusual dispersion of the non-interacting edges states, causing a crossing of bands with different valley and spin indices at the edge. We demonstrate that this stabilizes a domain wall structure with a spontaneously ordered phase degree of freedom. This coherent domain wall supports gapless charged excitations, and has a power law tunneling $I-V$ with a non-integral exponent. In proximity to a bulk lead, the edge may undergo a quantum phase transition between the Luttinger liquid phase and a metallic state when the edge confinement is sufficiently strong relative to the interaction energy scale.
Electronic waveguides in graphene formed by counterpropagating snake states in suitable inhomogeneous magnetic fields are shown to constitute a realization of a Tomonaga-Luttinger liquid. Due to the spatial separation of the right- and left-moving snake states, this non-Fermi liquid state induced by electron-electron interactions is essentially unaffected by disorder. We calculate the interaction parameters accounting for the absence of Galilei invariance in this system, and thereby demonstrate that non-Fermi liquid effects are significant and tunable in realistic geometries.