Do you want to publish a course? Click here

Transport in a Dissipative Luttinger Liquid

130   0   0.0 ( 0 )
 Added by Thomas Nattermann
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation $eta$ the weak link is always a relevant perturbation which suppresses transport strongly. At zero temperature the current voltage relation of the link is $Isim exp(-E_0/eV)$ where $E_0simeta/kappa$ and $kappa$ denotes the compressibility. At non-zero temperature $T$ the linear conductance is proportional to $exp(-sqrt{{cal C}E_0/k_BT})$. The decay of Friedel oscillation saturates for distance larger than $L_{eta}sim 1/eta $ from the impurity.



rate research

Read More

We study transport through a quantum dot side-coupled to two parallel Luttinger liquid leads in the presence of a Coulombic dot-lead interaction. This geometry enables an exact treatment of the inter-lead Coulomb interactions. We find that for dots symmetrically disposed between the two leads the correlation of charge fluctuations between the two leads can lead to an enhancement of the current at the Coulomb-blockade edge and even to a negative differential conductance. Moving the dot off center or separating the wires further converts the enhancement to a suppression.
In this paper we review recent theoretical results for transport in a one-dimensional (1d) Luttinger liquid. For simplicity, we ignore electron spin, and focus exclusively on the case of a single-mode. Moreover, we consider only the effects of a single (or perhaps several) spatially localized impurities. Even with these restrictions, the predicted behavior is very rich, and strikingly different than for a 1d non-interacting electron gas. The method of bosonization is reviewed, with an emphasis on physical motivation, rather than mathematical rigor. Transport through a single impurity is reviewed from several different perspectives, as a pinned strongly interacting ``Wigner crystal and in the limit of weak interactions. The existence of fractionally charged quasiparticles is also revealed. Inter-edge tunnelling in the quantum Hall effect, and charge fluctuations in a quantum dot under the conditions of Coulomb blockade are considered as examples of the developed techniques.
We have measured the low temperature conductance of a one-dimensional island embedded in a single mode quantum wire. The quantum wire is fabricated using the cleaved edge overgrowth technique and the tunneling is through a single state of the island. Our results show that while the resonance line shape fits the derivative of the Fermi function the intrinsic line width decreases in a power law fashion as the temperature is reduced. This behavior agrees quantitatively with Furusakis model for resonant tunneling in a Luttinger-liquid.
We report Coulomb drag measurements between vertically-integrated quantum wires separated by a barrier only 15 nm wide. The temperature dependence of the drag resistance is measured in the true one-dimensional (1D) regime where both wires have less than one 1D subband occupied. As a function of temperature, an upturn in the drag resistance is observed in three distinct devices at a temperature $T^* sim 1.6$ K. This crossover in Coulomb drag behaviour is consistent with Tomonaga-Luttinger liquid models for the 1D-1D drag between quantum wires.
94 - H.A. Fertig , Luis Brey 2006
We demonstrate that an undoped two-dimensional carbon plane (graphene) whose bulk is in the integer quantum Hall regime supports a non-chiral Luttinger liquid at an armchair edge. This behavior arises due to the unusual dispersion of the non-interacting edges states, causing a crossing of bands with different valley and spin indices at the edge. We demonstrate that this stabilizes a domain wall structure with a spontaneously ordered phase degree of freedom. This coherent domain wall supports gapless charged excitations, and has a power law tunneling $I-V$ with a non-integral exponent. In proximity to a bulk lead, the edge may undergo a quantum phase transition between the Luttinger liquid phase and a metallic state when the edge confinement is sufficiently strong relative to the interaction energy scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا