Do you want to publish a course? Click here

Does the Quenched Kardar-Parisi-Zhang Equation Describe the Directed Percolation Depinning Models?

68   0   0.0 ( 0 )
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

The roughening of interfaces moving in inhomogeneous media is investigated by numerical integration of the phenomenological stochastic differential equation proposed by Kardar, Parisi, and Zhang [Phys. Rev. Lett. 56, 889, (1986)] with quenched noise (QKPZ). We express the evolution equations for the mean height and the roughness into two contributions: the local and the lateral one. We compare this two contributions with the ones obtained for two directed percolation deppining models (DPD): the Tang and Leschhorn model [Phys. Rev A 45, R8309 (1992)] and the Buldyrev et al. model [Phys. Rev. A 45, R8313 (1992)] by Braunstein al. [J. Phys. A 32, 1801 (1999); Phys. Rev. E 59, 4243 (1999)]. Even these models have being classified in the same universality class that the QKPZ the contributions to the growing mechanisms are quite different. The lateral contribution in the DPD models, leads to an increasing of the roughness near the criticality while in the QKPZ equation this contribution always flattens the roughness. These results suggest that the QKPZ equation does not describe properly the DPD models even when the exponents derived from this equation are similar to the one obtained from simulations of these models.

rate research

Read More

87 - Sudip Mukherjee 2020
We study the stochastically driven conserved Kardar-Parisi-Zhang (CKPZ) equation with quenched disorders. Short-ranged quenched disorders is found to be a relevant perturbation on the pure CKPZ equation at one dimension, and as a result, a new universality class different from pure CKPZ equation appears to emerge. At higher dimensions, quenched disorder turns out to be ineffective to influence the universal scaling. This results in the asymptotic long wavelength scaling to be given by the linear theory, a scenario identical with the pure CKPZ equation. For sufficiently long-ranged quenched disorders, the universal scaling is impacted by the quenched disorder even at higher dimensions.
We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional plane spanned by the d-mers. This facilitates efficient, bit-coded algorithms with generalized Kawasaki dynamics of spins. Our simulations in d=2,3,4,5 dimensions provide scaling exponent estimates on much larger system sizes and simulations times published so far, where the effective growth exponent exhibits an increase. We provide evidence for the agreement with field theoretical predictions of the Kardar-Parisi-Zhang universality class and numerical results. We show that the (2+1)-dimensional exponents conciliate with the values suggested by Lassig within error margin, for the largest system sizes studied here, but we cant support his predictions for (3+1)d numerically.
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto quantum mechanics of attractive bosons with a contact interaction, where the roughening transition corresponds to a binding transition of two bosons with increasing the attraction. Such critical bosons in three dimensions actually exhibit the Efimov effect, where a three-boson coupling turns out to be relevant under the renormalization group so as to break the scale invariance down to a discrete one. On the basis of these facts linking the two distinct subjects in physics, we predict that the KPZ roughening transition in three dimensions shows either the discrete scale invariance or no intrinsic scale invariance.
Circular KPZ interfaces spreading radially in the plane have GUE Tracy-Widom (TW) height distribution (HD) and Airy$_2$ spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a cup, or any surface of revolution? To give an answer to this, we report here extensive numerical analyses of several one-dimensional KPZ models on substrates whose size enlarges as $langle L(t) rangle = L_0+omega t^{gamma}$, while their mean height $langle h rangle$ increases as usual [$langle h ranglesim t$]. We show that the competition between the $L$ enlargement and the correlation length ($xi simeq c t^{1/z}$) plays a key role in the asymptotic statistics of the interfaces. While systems with $gamma>1/z$ have HDs given by GUE and the interface width increasing as $w sim t^{beta}$, for $gamma<1/z$ the HDs are Gaussian, in a correlated regime where $w sim t^{alpha gamma}$. For the special case $gamma=1/z$, a continuous class of distributions exists, which interpolate between Gaussian (for small $omega/c$) and GUE (for $omega/c gg 1$). Interestingly, the HD seems to agree with the Gaussian symplectic ensemble (GSE) TW distribution for $omega/c approx 10$. Despite the GUE HDs for $gamma>1/z$, the spatial covariances present a strong dependence on the parameters $omega$ and $gamma$, agreeing with Airy$_2$ only for $omega gg 1$, for a given $gamma$, or when $gamma=1$, for a fixed $omega$. These results considerably generalize our knowledge on the 1D KPZ systems, unveiling the importance of the background space in their statistics.
We use the optimal fluctuation method to evaluate the short-time probability distribution $mathcal{P}left(H,L,tright)$ of height at a single point, $H=hleft(x=0,tright)$, of the evolving Kardar-Parisi-Zhang (KPZ) interface $hleft(x,tright)$ on a ring of length $2L$. The process starts from a flat interface. At short times typical (small) height fluctuations are unaffected by the KPZ nonlinearity and belong to the Edwards-Wilkinson universality class. The nonlinearity, however, strongly affects the (asymmetric) tails of $mathcal{P}(H)$. At large $L/sqrt{t}$ the faster-decaying tail has a double structure: it is $L$-independent, $-lnmathcal{P}simleft|Hright|^{5/2}/t^{1/2}$, at intermediately large $|H|$, and $L$-dependent, $-lnmathcal{P}sim left|Hright|^{2}L/t$, at very large $|H|$. The transition between these two regimes is sharp and, in the large $L/sqrt{t}$ limit, behaves as a fractional-order phase transition. The transition point $H=H_{c}^{+}$ depends on $L/sqrt{t}$. At small $L/sqrt{t}$, the double structure of the faster tail disappears, and only the very large-$H$ tail, $-lnmathcal{P}sim left|Hright|^{2}L/t$, is observed. The slower-decaying tail does not show any $L$-dependence at large $L/sqrt{t}$, where it coincides with the slower tail of the GOE Tracy-Widom distribution. At small $L/sqrt{t}$ this tail also has a double structure. The transition between the two regimes occurs at a value of height $H=H_{c}^{-}$ which depends on $L/sqrt{t}$. At $L/sqrt{t} to 0$ the transition behaves as a mean-field-like second-order phase transition. At $|H|<|H_c^{-}|$ the slower tail behaves as $-lnmathcal{P}sim left|Hright|^{2}L/t$, whereas at $|H|>|H_c^{-}|$ it coincides with the slower tail of the GOE Tracy-Widom distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا