We applied the Recurrent Variational Approach to the two-leg Hubbard ladder. At half-filling, our variational Ansatz was a generalization of the resonating valence bond state. At finite doping, hole pairs were allowed to move in the resonating valence bond background. The results obtained by the Recurrent Variational Approach were compared with results from Density Matrix Renormalization Group.
The Hubbard model on a two-leg ladder structure has been studied by a combination of series expansions at T=0 and the density-matrix renormalization group. We report results for the ground state energy $E_0$ and spin-gap $Delta_s$ at half-filling, as well as dispersion curves for one and two-hole excitations. For small $U$ both $E_0$ and $Delta_s$ show a dramatic drop near $t/t_{perp}sim 0.5$, which becomes more gradual for larger $U$. This represents a crossover from a band insulator phase to a strongly correlated spin liquid. The lowest-lying two-hole state rapidly becomes strongly bound as $t/t_{perp}$ increases, indicating the possibility that phase separation may occur. The various features are collected in a phase diagram for the model.
Using the variational cluster approach (VCA), we study the transition from the antiferromagnetic to the superconducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a new method to evaluate the VCA grand potential which employs a modified Lanczos algorithm and avoids integrations over the real or imaginary frequency axis. Thereby, very accurate results are possible for cluster sizes not accessible to full diagonalization. This is important for an improved treatment of short-range correlations, including correlations between Cooper pairs in particular. We investigate the cluster-size dependence of the phase-separation tendency that has been proposed recently on the basis of calculations for smaller clusters. It is shown that the energy barrier driving the phase separation decreases with increasing cluster size. This supports the conjecture that the ground state exhibits microscopic inhomogeneities rather than macroscopic phase separation. The evolution of the single-particle spectum as a function of doping is studied in addtion and the relevance of our results for experimental findings is pointed out.
We investigate the competition between different orders in the two-leg spin ladder with a ring-exchange interaction by means of a bosonic approach. The latter is defined in terms of spin-1 hardcore bosons which treat the Neel and vector chirality order parameters on an equal footing. A semiclassical approach of the resulting model describes the phases of the two-leg spin ladder with a ring-exchange. In particular, we derive the low-energy effective actions which govern the physical properties of the rung-singlet and dominant vector chirality phases. As a by-product of our approach, we reveal the mutual induction phenomenon between spin and chirality with, for instance, the emergence of a vector-chirality phase from the application of a magnetic field in bilayer systems coupled by four-spin exchange interactions.
Optical measurements in doped Mott insulators have discovered the emergence of spectral weights at mid-infrared (MIR) upon chemical doping and photodoping. MIR weights may have a relation to string-type excitation of spins, which is induced by a doped hole generating misarranged spins with respect to their sublattice. There are two types of string effects: one is an $S^z$ string that is repairable by quantum spin flips and the other is a phase string irreparable by the spin flips. We investigate the effect of $S^{z}$ and phase strings on MIR weights. Calculating the optical conductivity of the single-hole Hubbard model in the strong-coupling regime and the $t$-$J$ model on two-leg ladders by using time-dependent Lanczos and density-matrix renormalization group, we find that phase strings make a crucial effect on the emergence of MIR weights as compared with $S^{z}$ strings. Our findings indicate that a mutual Chern-Simons gauge field acting between spin and charge degrees of freedom, which is the origin of phase strings, is significant for obtaining MIR weights. Conversely, if we remove this gauge field, no phase is picked up by a doped hole. As a result, a spin-polaron accompanied by a local spin distortion emerges and a quasiparticle with a cosine-like energy dispersion is formed in single-particle spectral function. Furthermore, we suggest a Floquet engineering to examine the phase-string effect in cold atoms.
A non-perturbative approach to the single-band attractive Hubbard model is presented in the general context of functional derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-field type ansatz, on enforcement of the Pauli principle and a number of crucial sum-rules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle self-consistency has been achieved. In the second step of the approximation, an improved expression for the self-energy is obtained by using the results of the first step in an exact expression for the self-energy where the high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical consequences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accompanying paper (following this one).