Do you want to publish a course? Click here

Crossover Scaling in Dendritic Evolution at Low Undercooling

317   0   0.0 ( 0 )
 Added by Nikolas Provatas
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine scaling in two-dimensional simulations of dendritic growth at low undercooling, as well as in three-dimensional pivalic acid dendrites grown on NASAs USMP-4 Isothermal Dendritic Growth Experiment. We report new results on self-similar evolution in both the experiments and simulations. We find that the time dependent scaling of our low undercooling simulations displays a cross-over scaling from a regime different than that characterizing Laplacian growth to steady-state growth.

rate research

Read More

As shown by early studies on mean-field models of the glass transition, the geometrical features of the energy landscape provide fundamental information on the dynamical transition at the Mode-Coupling temperature $T_d$. We show that active particles can serve as a useful tool for gaining insight into the topological crossover in model glass-formers. In such systems the landmark of the minima-to-saddle transition in the potential energy landscape, taking place in the proximity of $T_d$, is the critical slowing down of dynamics. Nevertheless, the critical slowing down is a bottleneck for numerical simulations and the possibility to take advantage of the new smart algorithms capable to thermalize down in the glass phase is attractive. Our proposal is to consider configurations equilibrated below the threshold and study their dynamics in the presence of a small amount of self-propulsion. As exemplified here from the study of the p-spin model, the presence of self-propulsion gives rise to critical off-equilibrium equal-time correlations at the minima-to-saddles crossover, correlations which are not hindered by the sluggish glassy dynamics.
Due to high viscosity, glassy systems evolve slowly to the ordered state. Results of molecular dynamics simulation reveal that the structural ordering in glasses becomes observable over experimental (finite) time-scale for the range of phase diagram with high values of pressure. We show that the structural ordering in glasses at such conditions is initiated through the nucleation mechanism, and the mechanism spreads to the states at extremely deep levels of supercooling. We find that the scaled values of the nucleation time, $tau_1$ (average waiting time of the first nucleus with the critical size), in glassy systems as a function of the reduced temperature, $widetilde{T}$, are collapsed onto a single line reproducible by the power-law dependence. This scaling is supported by the simulation results for the model glassy systems for a wide range of temperatures as well as by the experimental data for the stoichiometric glasses at the temperatures near the glass transition.
Both structural glasses and disordered crystals are known to exhibit anomalous thermal, vibrational, and acoustic properties at low temperatures or low energies, what is still a matter of lively debate. To shed light on this issue, we studied the halomethane family C-Br_n-Cl_4-n (n = 0,1,2) at low temperature where, despite being perfectly translationally ordered stable monoclinic crystals, glassy dynamical features had been reported from experiments and molecular dynamics simulations. For n = 1,2 dynamic disorder originates by the random occupancy of the same lattice sites by either Cl or Br atoms, but not for the ideal reference case of CCl4. Measurements of the low-temperature specific heat (Cp) for all these materials are here reported, which provide evidence of the presence of a broad peak in Debye-reduced Cp/T^3 and in the reduced density of states g(w)/w^2 determined by means of neutron spectroscopy, as well as a linear term in Cp usually ascribed in glasses to two-level systems in addition to the cubic term expected for a fully ordered crystal. Being CCl4 a fully ordered crystal, we also performed density functional theory (DFT) calculations, which provide unprecedented detailed information about the microscopic nature of vibrations responsible for that broad peak, much alike the boson peak of glasses, finding it to essentially arise from a piling up (at around 3 - 4 meV) of low-energy optical modes together with acoustic modes near the Brillouin-zone limits.
Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called plastic crystals (PCs) have been shown to be good candidates combining high conductivity and favourable mechanical properties. PCs are formed by molecules whose orientational degrees of freedom still fluctuate despite the material exhibits a well-defined crystalline lattice. Here we show that the conductivity of Li+ ions in succinonitrile, the most prominent molecular PC electrolyte, can be enhanced by several decades when replacing part of the molecules in the crystalline lattice by larger ones. Dielectric spectroscopy reveals that this is accompanied by a stronger coupling of ionic and reorientational motions. These findings, which can be understood in terms of an optimised revolving door mechanism, open a new path towards the development of better solid-state electrolytes.
289 - B. Ruta , F. Zontone , Y. Chushkin 2016
Nowadays powerful X-ray sources like synchrotrons and free-electron lasers are considered as ultimate tools for probing microscopic properties in materials. However, the correct interpretation of such experiments requires a good understanding on how the beam affects the properties of the sample, knowledge that is currently lacking for intense X-rays. Here we use X-ray photon correlation spectroscopy to probe static and dynamic properties of oxide and metallic glasses. We find that although the structure does not depend on the flux, strong fluxes do induce a non-trivial microscopic motion in oxide glasses, whereas no such dependence is found for metallic glasses. These results show that high fluxes can alter dynamical properties in hard materials, an effect that needs to be considered in the analysis of X-ray data but which also gives novel possibilities to study materials properties since the beam can not only be used to probe the dynamics but also to pump it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا