Do you want to publish a course? Click here

Emergence of glassy features in halomethane crystals

150   0   0.0 ( 0 )
 Added by Miguel A. Ramos
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Both structural glasses and disordered crystals are known to exhibit anomalous thermal, vibrational, and acoustic properties at low temperatures or low energies, what is still a matter of lively debate. To shed light on this issue, we studied the halomethane family C-Br_n-Cl_4-n (n = 0,1,2) at low temperature where, despite being perfectly translationally ordered stable monoclinic crystals, glassy dynamical features had been reported from experiments and molecular dynamics simulations. For n = 1,2 dynamic disorder originates by the random occupancy of the same lattice sites by either Cl or Br atoms, but not for the ideal reference case of CCl4. Measurements of the low-temperature specific heat (Cp) for all these materials are here reported, which provide evidence of the presence of a broad peak in Debye-reduced Cp/T^3 and in the reduced density of states g(w)/w^2 determined by means of neutron spectroscopy, as well as a linear term in Cp usually ascribed in glasses to two-level systems in addition to the cubic term expected for a fully ordered crystal. Being CCl4 a fully ordered crystal, we also performed density functional theory (DFT) calculations, which provide unprecedented detailed information about the microscopic nature of vibrations responsible for that broad peak, much alike the boson peak of glasses, finding it to essentially arise from a piling up (at around 3 - 4 meV) of low-energy optical modes together with acoustic modes near the Brillouin-zone limits.



rate research

Read More

We present a theoretical discussion of the reversible parking problem, which appears to be one of the simplest systems exhibiting glassy behavior. The existence of slow relaxation, nontrivial fluctuations, and an annealing effect can all be understood by recognizing that two different time scales are present in the problem. One of these scales corresponds to the fast filling of existing voids, the other is associated with collective processes that overcome partial ergodicity breaking. The results of the theory are in a good agreement with simulation data; they provide a simple qualitative picture for understanding recent granular compaction experiments and other glassy systems.
226 - Claudia Artiaco 2019
We present the study of the landscape structure of athermal soft spheres both as a function of the packing fraction and of the energy. We find that, on approaching the jamming transition, the number of different configurations available to the system has a steep increase and that a hierarchical organization of the landscape emerges. We use the knowledge of the structure of the landscape to predict the values of thermodynamic observables on the edge of the transition.
163 - David Sherrington 2010
A basis for understanding and modelling glassy behaviour in martensitic alloys and relaxor ferroelectrics is discussed from the perspective of spin glasses.
The swap Monte Carlo algorithm allows the preparation of highly stable glassy configurations for a number of glass-formers, but is inefficient for some models, such as the much studied binary Kob-Andersen (KA) mixture. We have recently developed generalisations to the KA model where swap can be very effective. Here, we show that these models can in turn be used to considerably enhance the stability of glassy configurations in the original KA model at no computational cost. We successfully develop several numerical strategies both in and out of equilibrium to achieve this goal and show how to optimise them. We provide several physical measurements indicating that the proposed algorithms considerably enhance mechanical and thermodynamic stability in the KA model, including a transition towards brittle yielding behaviour. Our results thus pave the way for future studies of stable glasses using the KA model.
227 - Yogesh M Joshi 2014
Aging amorphous polymeric materials undergo free volume relaxation, which causes slowing down of the relaxation dynamics as a function of time. The resulting time dependency poses difficulties in predicting their long time physical behavior. In this work, we apply effective time domain approach to the experimental data on aging amorphous polymers and demonstrate that it enables prediction of long time behavior over the extraordinary time scales. We demonstrate that, unlike the conventional methods, the proposed effective time domain approach can account for physical aging that occurs over the duration of the experiments. Furthermore, this procedure successfully describes time temperature superposition and time stress superposition. It can also allow incorporation of varying dependences of relaxation time on aging time as well as complicated but known deformation history in the same experiments. This work strongly suggests that the effective time domain approach can act as an important tool to analyze the long time physical behavior of aging amorphous polymeric materials. Aging amorphous polymeric materials undergo free volume relaxation, which causes slowing down of the relaxation dynamics as a function of time. The resulting time dependency poses difficulties in predicting their long time physical behavior. In this work, we apply effective time domain approach to the experimental data on aging amorphous polymers and demonstrate that it enables prediction of long time behavior over the extraordinary time scales. We demonstrate that, unlike the conventional methods, the proposed effective time domain approach can account for physical aging that occurs over the duration of the experiments. Furthermore, this procedure successfully describes time temperature superposition and time stress superposition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا