Do you want to publish a course? Click here

Liquid-like spatial distribution of magnetic polarons revealed by neutron scattering in La{1-x}Ca{x}MnO3

113   0   0.0 ( 0 )
 Added by Hennion Martine
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

Elastic neutron scattering experiments performed in semi-conducting La(1-x)Ca(x)MnO3 single crystals (x=0.05, 0.08), reveal new features in the problem of electronic phase separation and metal insulator transition. Below TN, the observation of a broad magnetic modulation in the q-dependent scattering intensity, centered at nearly identical qm whatever the q direction, can be explained by a liquid-like spatial distribution of similar magnetic droplets. A semi-quantitative description of their magnetic state, diameter, and average distance, can be done using a two-phase model. Such a picture can explain the anomalous characteristics of the spin wave branches and may result from unmixing forces between charge carriers predicted from the s-d model.



rate research

Read More

A temperature-dependent EXAFS investigation of La{1-x}Ca{x}MnO3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16-0.22. The samples are insulating for x = 0.16-0.2 and show a metal/insulator transition for x = 0.22. All samples are ferromagnetic although the saturation magnetization for the 16% Ca sample is only ~ 70% of the expected value at 0.4T. We find that the FMI samples have similar correlations between changes in the local Mn-O distortions and the magnetization as observed previously for the colossal magnetoresistance (CMR) samples (0.2 < x < 0.5) - except that the FMI samples never become fully magnetized. The data show that there are at least two distinct types of distortions. The initial distortions removed as the insulating sample becomes magnetized are small and provides direct evidence that roughly 50% of the Mn sites have a small distortion/site and are magnetized first. The large remaining Mn-O distortions at low T are attributed to a small fraction of Jahn-Teller-distorted Mn sites that are either antiferromagnetically ordered or unmagnetized. Thus the insulating samples are very similar to the behavior of the CMR samples up to the point at which the M/I transition occurs for the CMR materials. The lack of metallic conductivity for x <= 0.2, when 50% or more of the sample is magnetic, implies that there must be preferred magnetized Mn sites and that such sites do not percolate at these concentrations.
Elastic and inelastic neutron scattering experiments have been performed in a La$_{0.94}$Sr$_{0.06}$MnO$_3$ untwinned crystal, which exhibits an antiferromagnetic canted magnetic structure with ferromagnetic layers. The elastic small q scattering exhibits a modulation with an anisotropic q-dependence. It can be pictured by ferromagnetic inhomogeneities or polarons with a platelike shape, the largest size ($approx17AA$) and largest inter-polaron distance ($approx$ 38$AA$) being within the ferromagnetic layers. Comparison with observations performed on Ca-doped samples, which show the growth of the magnetic polarons with doping, suggests that this growth is faster for the Sr than for the Ca substitution. Below the gap of the spin wave branch typical of the AF layered magnetic structure, an additional spin wave branch reveals a ferromagnetic and isotropic coupling, already found in Ca-doped samples. Its q-dependent intensity, very anisotropic, closely reflects the ferromagnetic correlations found for the static clusters. All these results agree with a two-phase electronic segregation occurring on a very small scale, although some characteristics of a canted state are also observed suggesting a weakly inhomogeneous state.
We report predominantly zero field muon spin relaxation measurements in a series of Ca-doped LaMnO_3 compounds which includes the colossal magnetoresistive manganites. Our principal result is a systematic study of the spin-lattice relaxation rates 1/T_1 and magnetic order parameters in the series La_{1-x}Ca_xMnO_3, x = 0.0, 0.06, 0.18, 0.33, 0.67 and 1.0. In LaMnO_3 and CaMnO_3 we find very narrow critical regions near the Neel temperatures T_N and temperature independent 1/T_1 values above T_N. From the 1/T_1 in LaMnO_3 we derive an exchange integral J = 0.83 meV which is consistent with the mean field expression for T_N. All of the doped manganites except CaMnO_3 display anomalously slow, spatially inhomogeneous spin-lattice relaxation below their ordering temperatures. In the ferromagnetic (FM) insulating La_{0.82}Ca_{0.18}MnO_3 and ferromagnetic conducting La_{0.67}Ca_{0.33}MnO_3 systems we show that there exists a bi-modal distribution of muSR rates lambda_f and lambda_s associated with relatively fast and slow Mn fluctuation rates, respectively. A physical picture is hypothesized for these FM phases in which the fast Mn rates are due to overdamped spin waves characteristic of a disordered FM, and the slower Mn relaxation rates derive from distinct, relatively insulating regions in the sample. Finally, likely muon sites are identified, and evidence for muon diffusion in these materials is discussed.
We report thermal-expansion, lattice-constant, and specific-heat data of the series La_1-xA_xCoO_3 for 0<= x <= 0.30 with A = Ca, Sr, and Ba. For the undoped compound LaCoO_3 the thermal-expansion coefficient alpha(T) exhibits a pronounced maximum around T=50K caused by a temperature-driven spin-state transition from a low-spin state of the Co^{3+$ ions at low towards a higher spin state at higher temperatures. The partial substitution of the La^{3+} ions by divalent Ca^{2+}, Sr^{2+}, or Ba^{2+} ions causes drastic changes in the macroscopic properties of LaCoO3. The large maximum in alpha(T) is suppressed and completely vanishes for x> 0.12. For A = Ca three different anomalies develop in alpha(T) with further increasing x, which are visible in specific-heat data as well. Together with temperature-dependent x-ray data we identify several phase transitions as a function of the doping concentration x and temperature. From these data we propose an extended phase diagram for La_1-xCa_xCoO_3.
258 - P. Steffens , O. Friedt , Y. Sidis 2010
By inelastic neutron scattering, we have analyzed the magnetic correlations in the paramagnetic metallic region of the series Ca(2-x)Sr(x)RuO(4), 0.2<=x<=0.62. We find different contributions that correspond to 2D ferromagnetic fluctuations and to fluctuations at incommensurate wave vectors (0.11,0,0), (0.26,0,0) and (0.3,0.3,0). These components constitute the measured response as function of the Sr-concentration x, of the magnetic field and of the temperature. A generic model is applicable to metallic Ca(2-x)Sr(x)RuO(4) close to the Mott transition, in spite of their strongly varying physical properties. The amplitude, characteristic energy and width of the incommensurate components vary only little as function of x, but the ferromagnetic component depends sensitively on concentration, temperature and magnetic field. While ferromagnetic fluctuations are very strong in Ca1.38Sr0.62RuO4 with a low characteristic energy of 0.2 meV at T=1.5 K, they are strongly suppressed in Ca1.8Sr0.2RuO4, but reappear upon the application of a magnetic field and form a magnon mode above the metamagnetic transition. The inelastic neutron scattering results document how the competition between ferromagnetic and incommensurate antiferromagnetic instabilities governs the physics of this system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا