Do you want to publish a course? Click here

Relationship between macroscopic physical properties and local distortions of low doping La{1-x}Ca{x}MnO3: an EXAFS study

390   0   0.0 ( 0 )
 Added by Frank Bridges
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

A temperature-dependent EXAFS investigation of La{1-x}Ca{x}MnO3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16-0.22. The samples are insulating for x = 0.16-0.2 and show a metal/insulator transition for x = 0.22. All samples are ferromagnetic although the saturation magnetization for the 16% Ca sample is only ~ 70% of the expected value at 0.4T. We find that the FMI samples have similar correlations between changes in the local Mn-O distortions and the magnetization as observed previously for the colossal magnetoresistance (CMR) samples (0.2 < x < 0.5) - except that the FMI samples never become fully magnetized. The data show that there are at least two distinct types of distortions. The initial distortions removed as the insulating sample becomes magnetized are small and provides direct evidence that roughly 50% of the Mn sites have a small distortion/site and are magnetized first. The large remaining Mn-O distortions at low T are attributed to a small fraction of Jahn-Teller-distorted Mn sites that are either antiferromagnetically ordered or unmagnetized. Thus the insulating samples are very similar to the behavior of the CMR samples up to the point at which the M/I transition occurs for the CMR materials. The lack of metallic conductivity for x <= 0.2, when 50% or more of the sample is magnetic, implies that there must be preferred magnetized Mn sites and that such sites do not percolate at these concentrations.



rate research

Read More

We report predominantly zero field muon spin relaxation measurements in a series of Ca-doped LaMnO_3 compounds which includes the colossal magnetoresistive manganites. Our principal result is a systematic study of the spin-lattice relaxation rates 1/T_1 and magnetic order parameters in the series La_{1-x}Ca_xMnO_3, x = 0.0, 0.06, 0.18, 0.33, 0.67 and 1.0. In LaMnO_3 and CaMnO_3 we find very narrow critical regions near the Neel temperatures T_N and temperature independent 1/T_1 values above T_N. From the 1/T_1 in LaMnO_3 we derive an exchange integral J = 0.83 meV which is consistent with the mean field expression for T_N. All of the doped manganites except CaMnO_3 display anomalously slow, spatially inhomogeneous spin-lattice relaxation below their ordering temperatures. In the ferromagnetic (FM) insulating La_{0.82}Ca_{0.18}MnO_3 and ferromagnetic conducting La_{0.67}Ca_{0.33}MnO_3 systems we show that there exists a bi-modal distribution of muSR rates lambda_f and lambda_s associated with relatively fast and slow Mn fluctuation rates, respectively. A physical picture is hypothesized for these FM phases in which the fast Mn rates are due to overdamped spin waves characteristic of a disordered FM, and the slower Mn relaxation rates derive from distinct, relatively insulating regions in the sample. Finally, likely muon sites are identified, and evidence for muon diffusion in these materials is discussed.
Elastic neutron scattering experiments performed in semi-conducting La(1-x)Ca(x)MnO3 single crystals (x=0.05, 0.08), reveal new features in the problem of electronic phase separation and metal insulator transition. Below TN, the observation of a broad magnetic modulation in the q-dependent scattering intensity, centered at nearly identical qm whatever the q direction, can be explained by a liquid-like spatial distribution of similar magnetic droplets. A semi-quantitative description of their magnetic state, diameter, and average distance, can be done using a two-phase model. Such a picture can explain the anomalous characteristics of the spin wave branches and may result from unmixing forces between charge carriers predicted from the s-d model.
We investigated the magnetic properties of (La$_{1-x}$Ba$_{x}$)(Zn$_{1-x}$Mn$_{x}$)AsO with $x$ varying from 0.005 to 0.05 at an external magnetic field of 1000 Oe. For doping levels of $x$ $leq$ 0.01, the system remains paramagnetic down to the lowest measurable temperature of 2 K. Only when the doping level increases to $x$ = 0.02 does the ferromagnetic ordering appear. Our analysis indicates that antiferromagnetic exchange interactions dominate for $x$ $leq$ 0.01, as shown by the negative Weiss temperature fitted from the magnetization data. The Weiss temperature becomes positive, i.e., ferromagnetic coupling starts to dominate, for $x$ $geq$ 0.02. The Mn-Mn spin interaction parameter $mid$$2J/k_B$$mid$ is estimated to be in the order of 10 K for both $x$ $leq$ 0.01 (antiferromagnetic ordered state) and $x$ $geq$ 0.02 (ferromagnetic ordered state). Our results unequivocally demonstrate the competition between ferromagnetic and antiferromagnetic exchange interactions in carrier-mediated ferromagnetic systems.
Evolution of the average and local crystal structure of Ca-doped LaMnO$_{3}$ has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations ($x = 0.18; 0.22$). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO$_{6}$ octahedra across the OR transition at T$_{S}$ $sim$ 720 K. The study utilized explicit two-phase PDF structural modeling, revealing that away from TMI there is no evidence for nanoscale phase coexistence. The local JT-distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO$_{3}$. The results hence do not support the percolative scenario for the MI transition in La$_{1-x}$Ca$_{x}$MnO$_{3}$ based on PS, and question its ubiquity in the manganites. In contrast to LaMnO3 that exhibits long range orbital correlations and sizeable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only $sim$ 1 nm with observably smaller distortions. In $x = 0.22$ sample local JT-distortions are found to persist across the OR transition and deep into the R-phase (up to $sim$ 1050 K) where they are crystallographically prohibited. Their magnitude and subnanometer spatial extent remain unchanged.
We report on a high-pressure Raman study on two members of the La$_{1-x}$Ca$_x$MnO$_{3-delta}$ manganite family ($x=0.20$, $delta=0$ and $delta=0.08$). The results obtained for the $delta=0$ sample show a different behavior in the low and high pressure regimes ascribed to the onset of a new pressure-activated interaction previously invoked in other manganite compounds. The comparison of our results with literature data gives further support to the identification of the Jahn-Teller active stretching mode and shows that pressure-induced octahedral symmetrization is more effective in systems exhibiting a lower metallic character. On the contrary the new interaction sets in at pressure which decreases on increasing the metallic character of the system indicating a relevant role of the Mn-Mn hopping integral in its activation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا