No Arabic abstract
We numerically investigate elementary excitations of the Heisenberg alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically coupled to each other. Employing a recently developed efficient Monte Carlo technique as well as an exact diagonalization method, we verify the spin-wave argument that the model exhibits two distinct excitations from the ground state which are gapless and gapped. The gapless branch shows a quadratic dispersion in the small-momentum region, which is of ferromagnetic type. With the intention of elucidating the physical mechanism of both excitations, we make a perturbation approach from the decoupled-dimer limit. The gapless branch is directly related to spin 1s, while the gapped branch originates from cooperation of the two kinds of spins.
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Frechet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z sim 2 at the critical temperature to z sim 0 in the limit of zero temperature. We confirm the event-chain algorithms fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.
Using (infinite) density matrix renormalization group techniques, ground state properties of antiferromagnetic S=1 Heisenberg spin chains with exchange and single-site anisotropies in an external field are studied. The phase diagram is known to display a plenitude of interesting phases. We elucidate quantum phase transitions between the supersolid and spin-liquid as well as the spin-liquid and the ferromagnetic phases. Analyzing spin correlation functions in the spin-liquid phase, commensurate and (two distinct) incommensurate regions are identified.
We study the finite-size behavior of the low-lying excitations of spin-1/2 Heisenberg chains with dimerization and next-to-nearest neighbors interaction, J_2. The numerical analysis, performed using density-matrix renormalization group, confirms previous exact diagonalization results, and shows that, for different values of the dimerization parameter delta, the elementary triplet and singlet excitations present a clear scaling behavior in a wide range of ell=L/xi (where L is the length of the chain and xi is the correlation length). At J_2=J_2c, where no logarithmic corrections are present, we compare the numerical results with finite-size predictions for the sine-Gordon model obtained using Luschers theory. For small delta we find a very good agreement for ell > 4 or 7 depending on the excitation considered.
We study a quantum spin-1/2 chain that is dual to the canonical problem of non-equilibrium Kawasaki dynamics of a classical Ising chain coupled to a thermal bath. The Hamiltonian is obtained for the general disordered case with non-uniform Ising couplings. The quantum spin chain (dubbed Ising-Kawasaki) is stoquastic, and depends on the Ising couplings normalized by the baths temperature. We give its exact ground states. Proceeding with uniform couplings, we study the one- and two-magnon excitations. Solutions for the latter are derived via a Bethe Ansatz scheme. In the antiferromagnetic regime, the two-magnon branch states show intricate behavior, especially regarding their hybridization with the continuum. We find that that the gapless chain hosts multiple dynamics at low energy as seen through the presence of multiple dynamical critical exponents. Finally, we analyze the full energy level spacing distribution as a function of the Ising coupling. We conclude that the system is non-integrable for generic parameters, or equivalently, that the corresponding non-equilibrium classical dynamics are ergodic.
The anisotropic XXZ spin-1/2 Heisenberg chain is studied using renormalization-group theory. The specific heats and nearest-neighbor spin-spin correlations are calculated thoughout the entire temperature and anisotropy ranges in both ferromagnetic and antiferromagnetic regions, obtaining a global description and quantitative results. We obtain, for all anisotropies, the antiferromagnetic spin-liquid spin-wave velocity and the Isinglike ferromagnetic excitation spectrum gap, exhibiting the spin-wave to spinon crossover. A number of characteristics of purely quantum nature are found: The in-plane interaction s_i^x s_j^x + s_i^y s_j^y induces an antiferromagnetic correlation in the out-of-plane s_i^z component, at higher temperatures in the antiferromagnetic XXZ chain, dominantly at low temperatures in the ferromagnetic XXZ chain, and, in-between, at all temperatures in the XY chain. We find that the converse effect also occurs in the antiferromagnetic XXZ chain: an antiferromagnetic s_i^z s_j^z interaction induces a correlation in the s_i^xy component. As another purely quantum effect, (i) in the antiferromagnet, the value of the specific heat peak is insensitive to anisotropy and the temperature of the specific heat peak decreases from the isotropic (Heisenberg) with introduction of either type (Ising or XY) anisotropy; (ii) in complete contrast, in the ferromagnet, the value and temperature of the specific heat peak increase with either type of anisotropy.