Do you want to publish a course? Click here

Zener Transitions Between Dissipative Bloch Bands

66   0   0.0 ( 0 )
 Added by Daniel Hone
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

Within a two-band tight binding model, we investigate the dynamics of electrons with Markoffian dephasing under the influence of static electric fields. With the help of both numerical and analytic calculations we find that the dephasing ultimately takes electrons which are initially located in one miniband to equal population of the two minibands, instead of undergoing persistent Rabi flop, as they do in the absence of scattering. Miniband localization is wholly destroyed by the intervention of dephasing. We also obtain the effective decay time for the approach to equal band populations under conditions of small interband communication and in the long-time limit, through a perturbative calculation. The decay rate shows characteristic sharp peaks at values of the parameters which give Zener resonances.



rate research

Read More

68 - Xian-Geng Zhao 1999
We extend, to include the effects of finite temperature, our earlier study of the interband dynamics of electrons with Markoffian dephasing under the influence of uniform static electric fields. We use a simple two-band tight-binding model and study the electric current response as a function of field strength and the model parameters. In addition to the Esaki-Tsu peak, near where the Bloch frequency equals the damping rate, we find current peaks near the Zener resonances, at equally spaced values of the inverse electric field. These become more prominenent and numerous with increasing bandwidth (in units of the temperature, with other parameters fixed). As expected, they broaden with increasing damping (dephasing).
99 - Ruofan Chen 2020
We study Landau-Zener transitions in a fermionic dissipative environment where a two-level (up and down states) system is coupled to two metallic leads kept with different chemical potentials at zero temperature. The dynamics of the system is simulated by an iterative numerically exact influence functional path integral method. In the pure Landau-Zener problem, two kinds of transition (from up to down state and from down to up state) probability are symmetric. However, this symmetry is destroyed by coupling the system to the bath. In addition, in both kinds of transitions, there exists a nonmonotonic dependence of the transition probability on the sweep velocity; meanwhile nonmonotonic dependence of the transition probability on the system-bath coupling strength is only shown in one of them. As in the spin-boson model, these phenomena can be explained by a simple phenomenological model.
155 - Haiping Hu , Erhai Zhao 2020
Knots have a twisted history in quantum physics. They were abandoned as failed models of atoms. Only much later was the connection between knot invariants and Wilson loops in topological quantum field theory discovered. Here we show that knots tied by the eigenenergy strings provide a complete topological classification of one-dimensional non-Hermitian (NH) Hamiltonians with separable bands. A $mathbb{Z}_2$ knot invariant, the global biorthogonal Berry phase $Q$ as the sum of the Wilson loop eigenphases, is proved to be equal to the permutation parity of the NH bands. We show the transition between two phases characterized by distinct knots occur through exceptional points and come in two types. We further develop an algorithm to construct the corresponding tight-binding NH Hamiltonian for any desired knot, and propose a scheme to probe the knot structure via quantum quench. The theory and algorithm are demonstrated by model Hamiltonians that feature for example the Hopf link, the trefoil knot, the figure-8 knot and the Whitehead link.
We report an experimental measurement of Landau-Zener transitions on an individual flux qubit within a multi-qubit superconducting chip designed for adiabatic quantum computation. The method used isolates a single qubit, tunes its tunneling amplitude Delta into the limit where Delta is much less than both the temperature T and the decoherence-induced energy level broadening, and forces it to undergo a Landau-Zener transition. We find that the behavior of the qubit agrees to a high degree of accuracy with theoretical predictions for Landau-Zener transition probabilities for a double-well quantum system coupled to 1/f magnetic flux noise.
The spin-dependent electron transport has been studied in magnetic semiconductor waveguides (nanowires) in the helical magnetic field. We have shown that -- apart from the known conductance dip located at the magnetic field equal to the helical-field amplitude $B_h$ -- the additional conductance dips (with zero conductance) appear at magnetic field different from $B_h$. This effect occuring in the non-adiabatic regime is explained as resulting from the resonant Landau-Zener transitions between the spin-splitted subbands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا