No Arabic abstract
Grazing incidence x-ray surface scattering has been used to investigate liquid surfaces down to the molecular scale. The free surface of water is well described by the capillary wave model (<z(q)z(-q)> ~ q-2 spectrum) up to wavevectors > 10^8 m^-1. At larger wavevectors near-surface acoustic waves must be taken into account. When the interface is bounded by a surfactant monolayer, it exhibits a bending stiffness and the bending rigidity modulus can be measured. However, bending effects generally cannot be described using the Helfrich Hamiltonian and the characteristic exponent in the roughness power spectrum can smaller than 4. Finally, upon compression, tethered monolayers formed on a subphase containing divalent ions are shown to buckle in the third dimension with a characteristic wavelength on the order of 10^8 m^-1.
Grazing Incidence X-ray Diffraction (GIXD) studies of monolayers of biomolecules at the air-water interface give quantitative information of in-plane packing, coherence lengths of the ordered diffracting crystalline domains and the orientation of hydrocarbon chains. Rheo-GIXD measurements revel quantitative changes in the monolayer under shear. Here we report GIXD studies of monolayers of Alamethicin peptide, DPPC lipid and their mixtures at the air-water interface under the application of steady shear stresses. The Alamethicin monolayer and the mixed monolayer show flow jamming transition. On the other hand, pure DPPC monolayer under the constant stress flows steadily with a notable enhancement of area/molecule, coherence length, and the tilt angle with increasing stress, suggesting fusion of nanocrystallites during flow. The DPPC-Alamethicin mixed monolayer shows no significant change in the area/DPPC molecule or in the DPPC chain tilt but the coherence length of both phases (DPPC and Alamethicin) increases suggesting that the crystallites of individual phases are merging to bigger size promoting more separation of phases in the system during flow. Our results show that Rheo-GIXD has the potential to explore in-situ molecular structural changes under rheological conditions for a diverse range of confined biomolecules at the interfaces.
We have developed an experimental system to simultaneously observe surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray scattering (GIXS) in gas pressures as high as the multi-Torr regime, while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano- to the meso-scale. The grazing incidence geometry provides tunable depth sensitivity while scattered X-rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and in ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O$_2$ atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent X-ray scattering experiments can greatly benefit from the concepts we present here.
Electroactive polymer thin films undergo repeated reversible structural change during operation in electrochemical applications. While synchrotron X-ray scattering is powerful for the characterization of stand-alone and ex-situ organic thin films, in situ structural characterization has been underutilized--in large part due to complications arising from supporting electrolyte scattering. This has greatly hampered the development of application relevant structure property relationships. Therefore, we have developed a new methodology for in situ and operando X-ray characterization that separates the incident and scattered X-ray beam path from the electrolyte. As a proof of concept, we demonstrate the in situ structural changes of weakly-scattering, organic mixed ionic-electronic conductor thin films in an aqueous electrolyte environment, enabling access to previously unexplored changes in the pi-pi peak and diffuse scatter in situ, while capturing the solvent swollen thin film structure which was inaccessible in previous ex situ studies. These in situ measurements improve the sensitivity to structural changes, capturing minute changes not possible ex situ, and have multimodal potential such as combined Raman measurements that also serve to validate the true in situ/operando conditions of the cell. Finally, we examine new directions enabled by this operando cell design and compare state of the art measurements.
The optics of a number of future X-ray telescopes will have very long focal lengths (10 - 20 m), and will consist of a number of nested/stacked thin, grazing-incidence mirrors. The optical quality characterization of a real mirror can be obtained via profile metrology, and the Point Spread Function of the mirror can be derived via one of the standard computation methods. However, in practical cases it can be difficult to access the optical surfaces of densely stacked mirror shells, after they have been assembled, using the widespread metrological tools. For this reason, the assessment of the imaging resolution of a system of mirrors is better obtained via a direct, full-illumination test in X-rays. If the focus cannot be reached, an intra-focus test can be performed, and the image can be compared with the simulation results based on the metrology, if available. However, until today no quantitative information was extracted from a full-illumination, intra-focal exposure. In this work we show that, if the detector is located at an optimal distance from the mirror, the intensity variations of the intra-focal, full-illumination image in single reflection can be used to reconstruct the profile of the mirror surface, without the need of a wavefront sensor. The Point Spread Function can be subsequently computed from the reconstructed mirror shape. We show the application of this method to an intra-focal (8 m distance from mirror) test performed at PANTER on an optical module prototype made of hot-slumped glass foils with a 20 m focal length, from which we could derive an expected imaging quality near 16 arcsec HEW.
We have studied the high-frequency dynamics of salol by inelastic x-ray scattering over a wide temperature range between 50 and 450 K, across the glass transition. We find that salol efficiently realizes the mechanism of dynamical arrest described by the mode-coupling theory, as manifested by a cusp singularity in the behaviour of the non-ergodicity parameter and a $Q$ dependence of the critical non-ergodicity parameter that is in phase with the static structure factor. These results confront positively the mode-coupling theory with liquids with local order.