Do you want to publish a course? Click here

Diffusion of colloids at short times

52   0   0.0 ( 0 )
 Added by Martin Watzlawek
 Publication date 1997
  fields Physics
and research's language is English
 Authors M. Watzlawek




Ask ChatGPT about the research

We study the combined effects of electrostatic and hydrodynamic interactions (HI) on the short-time dynamics of charge-stabilized colloidal spheres. For this purpose, we calculate the translational and the rotational self-diffusion coefficients, $D^t_s$ and $D^r_s$, as function of volume fraction $phi$ for various values of the effective particle charge $Z$ and various concentrations $n_s$ of added 1--1 electrolyte. Our results show that the self-diffusion coefficients in deionized suspensions are less affected by HI than in suspensions with added electrolyte. For very large $n_s$, we recover the well-known results for hard spheres, i.e. a linear $phi$-dependence of $D^t_s$ and $D^r_s$ at small $phi$. In contrast, for deionized charged suspensions at small $phi$, we observe the interesting non-linear scaling properties $D^t_spropto1-a_tphi^{4/3}$ and $D^r_spropto 1-a_rphi^2$. The coefficients $a_t$ and $a_r$ are found to be nearly independent of $Z$. The qualitative differences between the dynamics of charged and uncharged particles can be well explained in terms of an effective hard sphere (EHS) model.



rate research

Read More

192 - S. Boettcher 2009
The far-from-equilibrium dynamics of glassy systems share important phenomenological traits. A transition is generally observed from a time-homogeneous dynamical regime to an aging regime where physical changes occur intermittently and, on average, at a decreasing rate. It has been suggested that a global change of the independent time variable to its logarithm may render the aging dynamics homogeneous: for colloids, this entails diffusion but on a logarithmic time scale. Our novel analysis of experimental colloid data confirms that the mean square displacement grows linearly in time at low densities and shows that it grows linearly in the logarithm of time at high densities. Correspondingly, pairs of particles initially in close contact survive as pairs with a probability which decays exponentially in either time or its logarithm. The form of the Probability Density Function of the displacements shows that long-ranged spatial correlations are very long-lived in dense colloids. A phenomenological stochastic model is then introduced which relies on the growth and collapse of strongly correlated clusters (dynamic heterogeneity), and which reproduces the full spectrum of observed colloidal behaviors depending on the form assumed for the probability that a cluster collapses during a Monte Carlo update. In the limit where large clusters dominate, the collapse rate is ~1/t, implying a homogeneous, log-Poissonian process that qualitatively reproduces the experimental results for dense colloids. Finally an analytical toy-model is discussed to elucidate the strong dependence of the simulation results on the integrability (or lack thereof) of the cluster collapse probability function.
Dielectric particles in weakly conducting fluids rotate spontaneously when subject to strong electric fields. Such Quincke rotation near a plane electrode leads to particle translation that enables physical models of active matter. Here, we show that Quincke rollers can also exhibit oscillatory dynamics, whereby particles move back and forth about a fixed location. We explain how oscillations arise for micron-scale particles commensurate with the thickness of a field-induced boundary layer in the nonpolar electrolyte. This work enables the design of colloidal oscillators.
We report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical binding. We show that the flow-induced force on the colloids can be described as the gradient of a potential. The nonequilibrium steady state due to local heating thus admits an effective equilibrium description. The optofluidic manipulation explored in this work opens novel ways to manipulate and assemble colloidal particles
The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesoscopic numerical approach which relies on an approximated numerical solution of the Navier-Stokes equation, we show that when adsorbed at a fluid interface, an active colloid experiences a net torque even in the absence of a viscosity contrast between the two adjacent fluids. In particular, we study the dependence of this torque on the contact angle of the colloid with the fluid-fluid interface and on its surface properties. We rationalize our results via an approximate approach which accounts for the appearance of a local friction coefficient. By providing insight into the dynamics of active colloids adsorbed at fluid interfaces, our results are relevant for two-dimensional self assembly and emulsion stabilization by means of active colloids.
123 - Kai Kratzer , Axel Arnold 2014
We report simulations on the homogeneous liquid-fcc nucleation of charged colloids for both low and high contact energy values. As a precursor for crystal formation, we observe increased local order at the position where the crystal will form, but no correlations with the local density. Thus, the nucleation is driven by order fluctuations rather than density fluctuations. Our results also show that the transition involves two stages in both cases, first a transition liquid-bcc, followed by a bcc-hcp/fcc transition. Both transitions have to overcome free energy barriers, so that a spherical bcc-like cluster is formed first, in which the final fcc-like structure is nucleated mainly at the surface of the crystallite. This means that the bcc-fcc phase transition is a heterogeneous nucleation, even though we start from a homogeneous bulk liquid. The height of the bcc-hcp/fcc free energy barrier strongly depends on the contact energies of the colloids. For low contact energy this barrier is low, so that the bcc-hcp/fcc transition happens spontaneously. For the higher contact energy, the second barrier is too high to be crossed spontaneously by the colloidal system. However, it was possible to ratchet the system over the second barrier and to transform the bcc nuclei into the stable hcp/fcc phase. The transitions are dominated by the first liquid-bcc transition and can be described by Classical Nucleation Theory using an effective surface tension.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا