Do you want to publish a course? Click here

Bose-Einstein to BCS Crossover Picture for High-T_c Cuprates

255   0   0.0 ( 0 )
 Added by Graeme Luke
 Publication date 1997
  fields Physics
and research's language is English
 Authors Y.J.Uemura




Ask ChatGPT about the research

Combining (1) the universal correlations between $T_{c}$ and $n_{s}/m^{*}$ (superconducting carrier density / effective mass) and (2) the pseudo-gap behavior in the underdoped region, we obtain a picture to describe superconductivity in cuprate systems in evolution from Bose-Einstein to BCS condensation. Overdoped and Zn-substituted cuprate systems show signatures of reduced superfluid density in a microscopic phase separation. Scaling of $T_{c}$ to the superfluid volume density $n_{s}$ in all these cases indicate importance of Bose condensation.



rate research

Read More

We have studied the influence of disorder induced by electron irradiation on the normal state resistivities $rho(T)$ of optimally and underdoped YBa2CuOx single crystals, using pulsed magnetic fields up to 60T to completely restore the normal state. We evidence that point defect disorder induces low T upturns of rho(T) which saturate in some cases at low T in large applied fields as would be expected for a Kondo-like magnetic response. Moreover the magnitude of the upturns is related to the residual resistivity, that is to the concentration of defects and/or their nanoscale morphology. These upturns are found quantitatively identical to those reported in lower Tc cuprates, which establishes the importance of disorder in these supposedly pure compounds. We therefore propose a realistic phase diagram of the cuprates, including disorder, in which the superconducting state might reach the antiferromagnetic phase in the clean limit.
The penetration depth is calculated over the entire doping range of the cuprate phase diagram with emphasis on the underdoped regime. Pseudogap formation on approaching the Mott transition, for doping below a quantum critical point, is described within a model based on the resonating valence bond spin liquid which provides an ansatz for the coherent piece of the Greens function. Fermi surface reconstruction, which is an essential element of the model, has a strong effect on the superfluid density at T=0 producing a sharp drop in magnitude, but does not change the slope of the linear low temperature variation. Comparison with recent data on Bi-based cuprates provides validation of the theory and shows that the effects of correlations, captured by Gutzwiller factors, are essential for a qualitative understanding of the data. We find that the Ferrell-Glover-Tinkham sum rule still holds and we compare our results with those for the Fermi arc and the nodal liquid models.
132 - N. E. Hussey 2008
In this article, I review progress towards an understanding of the normal state (in-plane) transport properties of high-$T_c$ cuprates in the light of recent developments in both spectroscopic and transport measurement techniques. Against a backdrop of mounting evidence for anisotropic single-particle lifetimes in cuprate superconductors, new results have emerged that advocate similar momentum dependence in the transport decay rate $Gamma$({bf k}). In addition, enhancement of the energy scale (up to the bare bandwidth) over which spectroscopic information on the quasiparticle response can be obtained has led to the discovery of new, unforeseen features that surprisingly, may have a significant bearing on the transport properties at the dc limit. With these two key developments in mind, I consider here whether all the ingredients necessary for a complete phenomenological description of the anomalous normal state transport properties of high-$T_c$ cuprates are now in place.
In this review article we consider theoretically and give experimental support to the models of the Fermi-Bose mixtures and the BCS-BEC crossover compared with the strong-coupling approach, which can serve as the cornerstones on the way from high-temperature to room-temperature superconductivity in pressurized metallic hydrides. We discuss some key theoretical ideas and mechanisms proposed for unconventional superconductors (cuprates, pnictides, chalcogenides, bismuthates, diborides, heavy-fermions, organics, bilayer graphene, twisted graphene, oxide hetero-structures), superfluids and balanced or imbalanced ultracold Fermi gases in magnetic traps. We build a bridge between unconventional superconductors and recently discovered pressurized hydrides superconductors H3S and LaH10 with the critical temperature close to room temperature. We discuss systems with line of nodal Dirac points close to the Fermi surface, superconducting shape resonances and hyperbolic superconducting networks which are very important for the development of novel topological superconductors, for the energetics, for the applications in nano-electronics and quantum computations.
We have used pulsed magnetic fields up to 60Tesla to suppress the contribution of superconducting fluctuations(SCF)to the conductivity above Tc in a series of YBa2Cu3O6+x from the deep pseudogapped state to slight overdoping. Accurate determinations of the SCF conductivity versus temperature and magnetic field have been achieved. Their joint quantitative analyses with respect to Nernst data allow us to establish that thermal fluctuations following the Ginzburg-Landau(GL) scheme are dominant for nearly optimally doped samples. The deduced coherence length xi(T) is in perfect agreement with a gaussian (Aslamazov-Larkin) contribution for 1.01Tc<T<1.2Tc. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. For all dopings we evidence that the fluctuations are highly damped when increasing T or H. The data permits us to define a field Hc^prime and a temperature Tc^prime above which the SCF are fully suppressed. The analysis of the fluctuation magnetoconductance in the GL approach allows us to determine the critical field Hc2(0). The actual values of Hc^prime(0) and Hc2(0) are found quite similar and both increase with hole doping. These depairing fields, which are directly connected to the magnitude of the SC gap, do therefore follow the Tc variation which is at odds with the sharp decrease of the pseudogap T* with increasing hole doping. This is on line with our previous evidence that T* is not the onset of pairing. We finally propose a three dimensional phase diagram including a disorder axis, which allows to explain most peculiar observations done so far on the diverse cuprate families.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا