We have studied temperature dependence of both diagonal and Hall resistivity in the vicinity of $ u=1/2$. Magnetoresistance was found to be positive and almost independent of temperature: temperature enters resistivity as a logarithmic correction. At the same time, no measurable corrections to the Hall resistivity has been found. Neither of these results can be explained within the mean-field theory of composite fermions by an analogy with conventional low-field interaction theory. There is an indication that interactions of composite fermions with fluctuations of the gauge field may reconcile the theory and experiment.
There is increasing experimental evidence for fractional quantum Hall effect at filling factor $ u=2+3/8$. Modeling it as a system of composite fermions, we study the problem of interacting composite fermions by a number of methods. In our variational study, we consider the Fermi sea, the Pfaffian paired state, and bubble and stripe phases of composite fermions, and find that the Fermi sea state is favored for a wide range of transverse thickness. However, when we incorporate interactions between composite fermions through composite-fermion diagonalization on systems with up to 25 composite fermions, we find that a gap opens at the Fermi level, suggesting that inter-composite fermion interaction can induce fractional quantum Hall effect at $ u=2+3/8$. The resulting state is seen to be distinct from the Pfaffian wave function.
In bilayer quantum Hall systems at filling fractions near nu=1/2+1/2, as the spacing d between the layers is continuously decreased, intra-layer correlations must be replaced by inter-layer correlations, and the composite fermion (CF) Fermi seas at large d must eventually be replaced by a composite boson (CB) condensate or 111 state at small d. We propose a scenario where CBs and CFs coexist in two interpenetrating fluids in the transition. Trial wavefunctions describing these mixed CB-CF states compare very favorably with exact diagonalization results. A Chern-Simons transport theory is constructed that is compatible with experiment.
Spin excitations from a partially populated composite fermion level are studied above and below $ u=1/3$. In the range $2/7< u<2/5$ the experiments uncover significant departures from the non-interacting composite fermion picture that demonstrate the increasing impact of interactions as quasiparticle Landau levels are filled. The observed onset of a transition from free to interacting composite fermions could be linked to condensation into the higher order states suggested by transport experiments and numerical evaluations performed in the same filling factor range.
We observe geometric resonance features of composite fermions on the flanks of the even denominator { u} = 1/2 fractional quantum Hall state in high-mobility two-dimensional electron and hole systems confined to wide GaAs quantum wells and subjected to a weak, strain-induced, unidirectional periodic potential modulation. The features provide a measure of how close to { u} = 1/2 the system stays single-component and supports a composite fermion Fermi sea before transitioning into a { u} = 1/2 fractional quantum Hall state, presumably the two-component {Psi}331 state.
The enigmatic even-denominator fractional quantum Hall state at Landau level filling factor $ u=5/2$ is arguably the most promising candidate for harboring Majorana quasi-particles with non-Abelian statistics and thus of potential use for topological quantum computing. The theoretical description of the $ u=5/2$ state is generally believed to involve a topological p-wave pairing of fully spin-polarized composite fermions through their condensation into a non-Abelian Moore-Read Pfaffian state. There is, however, no direct and conclusive experimental evidence for the existence of composite fermions near $ u=5/2$ or for an underlying fully spin-polarized Fermi sea. Here, we report the observation of composite fermions very near $ u=5/2$ through geometric resonance measurements, and find that the measured Fermi wavevector provides direct demonstration of a Fermi sea with full spin polarization. This lends crucial credence to the model of $5/2$ fractional quantum Hall effect as a topological p-wave paired state of composite fermions.