No Arabic abstract
In bilayer quantum Hall systems at filling fractions near nu=1/2+1/2, as the spacing d between the layers is continuously decreased, intra-layer correlations must be replaced by inter-layer correlations, and the composite fermion (CF) Fermi seas at large d must eventually be replaced by a composite boson (CB) condensate or 111 state at small d. We propose a scenario where CBs and CFs coexist in two interpenetrating fluids in the transition. Trial wavefunctions describing these mixed CB-CF states compare very favorably with exact diagonalization results. A Chern-Simons transport theory is constructed that is compatible with experiment.
We have studied temperature dependence of both diagonal and Hall resistivity in the vicinity of $ u=1/2$. Magnetoresistance was found to be positive and almost independent of temperature: temperature enters resistivity as a logarithmic correction. At the same time, no measurable corrections to the Hall resistivity has been found. Neither of these results can be explained within the mean-field theory of composite fermions by an analogy with conventional low-field interaction theory. There is an indication that interactions of composite fermions with fluctuations of the gauge field may reconcile the theory and experiment.
We report magnetotransport measurements of fractional quantum Hall states in an AlAs quantum well around Landau level filling factor nu = 3/2, demonstrating that the quasiparticles are composite Fermions (CFs) with a valley degree of freedom. By monitoring the valley level crossings for these states as a function of applied symmetry-breaking strain, we determine the CF valley susceptibility and polarization. The data can be explained well by a simple Landau level fan diagram for CFs, and are in nearly quantitative agreement with the results reported for CF spin polarization.
We observe geometric resonance features of composite fermions on the flanks of the even denominator { u} = 1/2 fractional quantum Hall state in high-mobility two-dimensional electron and hole systems confined to wide GaAs quantum wells and subjected to a weak, strain-induced, unidirectional periodic potential modulation. The features provide a measure of how close to { u} = 1/2 the system stays single-component and supports a composite fermion Fermi sea before transitioning into a { u} = 1/2 fractional quantum Hall state, presumably the two-component {Psi}331 state.
Using acoustic method we study dependences of transverse AC conductance, $sigma (omega)$, on magnetic field, temperature and the amplitude of AC electric field in a wide (75 nm) quantum well (QW) structure focusing on the vicinity of the filling factor $ u =1/2$. Measurements are performed in the frequency domain 30-307 MHz and in the temperature domain 20-500 mK. Usually, in wide QW structures closely to $ u =1/2$ the fractional quantum Hall effect (FQHE) regime is realized at some parameters of the sample. However, in our structure, at $ u =1/2$ it is a compressible state corresponding to gas of composite fermions which is observed. This is confirmed by apparent frequency independence and weakly decreasing temperature dependence of $mathrm{Re}, sigma(omega)$. Comparing the dependences of this quantity on temperature and power of the acoustic wave we conclude that the observed nonlinear behavior of the conductance is compatible with heating of the composite fermions by the acoustic wave. For comparison, we also study the vicinity of $ u = 3/2$ where the FQHE regime is clearly observed.
We study the role of anisotropy on the transport properties of composite fermions near Landau level filling factor $ u=1/2$ in two-dimensional holes confined to a GaAs quantum well. By applying a parallel magnetic field, we tune the composite fermion Fermi sea anisotropy and monitor the relative change of the transport scattering time at $ u=1/2$ along the principal directions. Interpreted in a simple Drude model, our results suggest that the scattering time is longer along the longitudinal direction of the composite fermion Fermi sea. Furthermore, the measured energy gap for the fractional quantum Hall state at $ u=2/3$ decreases when anisotropy becomes significant. The decrease, however, might partly stem from the charge distribution becoming bilayer-like at very large parallel magnetic fields.