No Arabic abstract
An implementation of the multiple-scattering approach to x-ray magnetic circular dichroism (XMCD) in K-edge x-ray absorption spectroscopy is presented. The convergence problems due to the cluster size and the relativistic corrections are solved using an expansion of the Dirac Green function for complex energies up to the second order in 1/$c$. The Fermi energy is dealt with via a complex plane integration. Numerical methods used to obtain the semi-relativistic Green function in the whole complex plane are explained. We present a calculation of the magnetic circular dichroism at the K-edge of bcc-iron including the core hole effect. A good agreement is found at high energy. The physical origins of the XMCD spectrum near the edge and far from the edge are analyzed. The influence of the core hole, the possibility of a multiple-scattering expansion and the relation of XMCD with the spin-polarized density of states are discussed. A simple interpretation of XMCD at the K-edge is presented in terms of a rigid-band model.
An efficient first principles approach to calculate X-ray magnetic circular dichroism (XMCD) and X-ray natural circular dichroism (XNCD) is developed and applied in the near edge region at the K-and L1-edges in solids. Computation of circular dichroism requires precise calculations of X-ray absorption spectra (XAS) for circularly polarized light. For the derivation of the XAS cross section, we used a relativistic description of the photon-electron interaction that results in an additional term in the cross-section that couples the electric dipole operator with an operator $mathbf{sigma}cdot (mathbf{epsilon} times mathbf{r})$ that we name spin-position. The numerical method relies on pseudopotentials, on the gauge including projected augmented wave method and on a collinear spin relativistic description of the electronic structure. We apply the method to the calculations of K-edge XMCD spectra of ferromagnetic iron, cobalt and nickel and of I L1-edge XNCD spectra of $alpha$-LiIO3, a compound with broken inversion symmetry. For XMCD spectra we find that, even if the electric dipole term is the dominant one, the electric quadrupole term is not negligible (8% in amplitude in the case of iron). The term coupling the electric dipole operator with the spin-position operator is significant (28% in amplitude in the case of iron). We obtain a sum-rule relating this new term to the spin magnetic moment of the p-states. In $alpha$-LiIO3 we recover the expected angular dependence of the XNCD spectra.
The X-ray magnetic circular dichroism (XMCD) has been measured at the Co K edge in Co-hcp and R-Co compounds (R=La, Tb, Dy). The structure of the experimental XMCD spectra in the near-edge region has been observed to be highly sensitive to the magnetic environment of the absorbing site. Calculations of the XMCD have been carried out at the Co K edge in Co metal, LaCo$_5$ and TbCo$_5$ within the multiple-scattering framework including the spin-orbit coupling. In the three systems, the XMCD spectra in the near-edge region are well reproduced. The possibility to separate and quantitatively estimate the local effects from those due to the neighboring atoms in the XMCD cross section makes possible a more physical understanding of the spectra. The present results emphasize the major role played by the $d$ states of the Tb ions in the XMCD spectrum at the Co K edge in the TbCo$_5$ compound.
The two-dimensional Bi2Sr2CaCu2O8+y (Bi2212), the most studied prototype cuprate superconductor, is a lamellar system made of a stack of two-dimensional corrugated CuO2 bilayers separated by Bi2O2+ySr2O2 layers. While the large majority of theories, proposed to interpret unconventional high Tc superconductivity in Bi2Sr2CaCu2O8+y, assume a centrosymmetric tetragonal CuO2 lattice for the [CuO2]Ca[CuO2] bilayer here we report new compelling results providing evidence for local noncentrosymmetric structure at the Cu site. We have measured polarized Cu K-edge XANES (x-ray absorption near edge structure) and the K-edge X-ray magnetic circular dichroism (XMCD) of a Bi2212 single crystal near optimum doping. The Cu K edge XMCD signal was measured at ID12 beamline of ESRF with the k-vector of x-ray beam parallel to c-axis i.e. with the electric field of x-ray beam E//ab, using a 17 T magnetic field parallel to the c-axis of a Bi2212 single crystal. Numerical simulations of the XMCD signal of Bi2212 by multiple scattering theory have shown agreement with the experimental XMCD signal only for the local structure with noncentrosymmetric Bb2b space group of Bi2Sr2CaCu2O8+y.
The actinide cubic Laves compounds NpAl2, NpOs2, NpFe2, and PuFe2 have been examined by X-ray magnetic circular dichroism (XMCD) at the actinide M4,5 absorption edges and Os L2,3 absorption edges. The XMCD experiments performed at the M4,5 absorption edges of Np and Pu allow us to determine the spectroscopic branching ratio, which gives information on the coupling scheme in these materials. In all materials the intermediate coupling scheme is found appropriate. Comparison with the SQUID data for NpOs2 and PuFe2 allows a determination of the individual orbital and spin magnetic moments and the magnetic dipole contribution mmd. The resulting orbital and spin magnetic moments are in good agreement with earlier values determined by neutron diffraction, and the values of mmd are non-negligible, and close to those predicted for intermediate coupling. There is a comparatively large induced moment on the Os atom in NpOs2 such that the Os contribution to the total moment per formula unit is ~30% of the total. The spin and orbital moments at the Os site are parallel, in contrast to the anti-parallel configuration of Os impurities in 3d ferromagnetic transition metals. Calculations using the LDA+U technique are reported. The ab initio computed XMCD spectra show good agreement with experimental spectra for small values (0-1eV) of the Hubbard U parameter, which underpins that 5f electrons in these compounds are relatively delocalized.
Using x-ray magnetic circular dichroism (XMCD), we determine the element-specific character and polarization of unoccupied states near the Fermi level in (Ga,Mn)As and (In,Ga,Mn)As thin films. The XMCD at the As K absorption edge consists of a single peak located on the low-energy side of the edge, which increases with the concentration of ferromagnetic Mn moments. The XMCD at the Mn K edge is more detailed and is strongly concentration-dependent, which is interpreted as a signature of hole localization for low Mn doping. The results indicate a markedly different character of the polarized holes in low-doped insulating and high-doped metallic films, with a transfer of the hole orbital magnetic moment from Mn to As sites on crossing the metal-insulator transition.