Do you want to publish a course? Click here

Element-resolved orbital polarization in (III,Mn)As ferromagnetic semiconductors from $K$ edge x-ray magnetic circular dichroism

98   0   0.0 ( 0 )
 Added by Kevin Edmonds
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using x-ray magnetic circular dichroism (XMCD), we determine the element-specific character and polarization of unoccupied states near the Fermi level in (Ga,Mn)As and (In,Ga,Mn)As thin films. The XMCD at the As K absorption edge consists of a single peak located on the low-energy side of the edge, which increases with the concentration of ferromagnetic Mn moments. The XMCD at the Mn K edge is more detailed and is strongly concentration-dependent, which is interpreted as a signature of hole localization for low Mn doping. The results indicate a markedly different character of the polarized holes in low-doped insulating and high-doped metallic films, with a transfer of the hole orbital magnetic moment from Mn to As sites on crossing the metal-insulator transition.

rate research

Read More

We demonstrate sensitivity of the Mn 3d valence states to strain in the ferromagnetic semiconductors (Ga,Mn)As and (Al,Ga,Mn)As, using x-ray magnetic circular dichroism (XMCD). The spectral shape of the Mn $L_{2,3}$ XMCD is dependent on the orientation of the magnetization, and features with cubic and uniaxial dependence are distinguished. Reversing the strain reverses the sign of the uniaxial anisotropy of the Mn $L_3$ pre-peak which is ascribed to transitions from the Mn 2p core level to p-d hybridized valence band hole states. With increasing carrier localization, the $L_3$ pre-peak intensity increases, indicating an increasing 3d character of the hybridized holes.
The magnetic circular dichroism of III-V diluted magnetic semiconductors, calculated within a theoretical framework suitable for highly disordered materials, is shown to be dominated by optical transitions between the bulk bands and an impurity band formed from magnetic dopant states. The theoretical framework incorporates real-space Greens functions to properly incorporate spatial correlations in the disordered conduction band and valence band electronic structure, and includes extended and localized electronic states on an equal basis. Our findings reconcile unusual trends in the experimental magnetic circular dichroism in III-V DMSs with the antiferromagnetic p-d exchange interaction between a magnetic dopant spin and its host.
The magnetic properties of as-grown Ga$_{1-x}$Mn$_{x}$As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {it intrinsic} XMCD intensity at high temperatures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature ($T_C$), suggesting that short-range ferromagnetic correlations are developed above $T_C$. The present results also suggest that antiferromagnetic interaction between the substitutional and interstitial Mn (Mn$_{int}$) ions exists and that the amount of the Mn$_{int}$ affects $T_C$.
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is observed at the As K absorption edge, yielding an As 4p orbital magnetic moment of around -0.1 Bohr magnetons per valence band hole. This is strongly influenced by strain, indicating its crucial influence on the magnetic anisotropy. The dichroism at the Ga K edge is much weaker. The K edge XMCD signals for Mn and As both have positive sign, which indicates the important contribution of Mn 4p states to the Mn K edge spectra.
An efficient first principles approach to calculate X-ray magnetic circular dichroism (XMCD) and X-ray natural circular dichroism (XNCD) is developed and applied in the near edge region at the K-and L1-edges in solids. Computation of circular dichroism requires precise calculations of X-ray absorption spectra (XAS) for circularly polarized light. For the derivation of the XAS cross section, we used a relativistic description of the photon-electron interaction that results in an additional term in the cross-section that couples the electric dipole operator with an operator $mathbf{sigma}cdot (mathbf{epsilon} times mathbf{r})$ that we name spin-position. The numerical method relies on pseudopotentials, on the gauge including projected augmented wave method and on a collinear spin relativistic description of the electronic structure. We apply the method to the calculations of K-edge XMCD spectra of ferromagnetic iron, cobalt and nickel and of I L1-edge XNCD spectra of $alpha$-LiIO3, a compound with broken inversion symmetry. For XMCD spectra we find that, even if the electric dipole term is the dominant one, the electric quadrupole term is not negligible (8% in amplitude in the case of iron). The term coupling the electric dipole operator with the spin-position operator is significant (28% in amplitude in the case of iron). We obtain a sum-rule relating this new term to the spin magnetic moment of the p-states. In $alpha$-LiIO3 we recover the expected angular dependence of the XNCD spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا