Do you want to publish a course? Click here

Quantum Rings with Rashba spin orbit coupling: a path integral approach

63   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ a path integral real time approach to compute the DC conductance and spin polarization for electrons transported across a ballistic Quantum Ring with Rashba spin-orbit interaction. We use a piecewise semiclassical approximation for the particle orbital motion and solve the spin dynamics exactly, by accounting for both Zeeman coupling and spin-orbit interaction at the same time. Within our approach, we are able to study how the interplay between Berry phase, Ahronov Casher phase, Zeeman interaction and weak localization corrections influences the quantum interference in the conductance within a wide range of externally applied fields. Our results are helpful in inerpreting recent measurements on interferometric rings.



rate research

Read More

191 - Oleg Chalaev , G. Vignale 2010
In the absence of an external field, the Rashba spin-orbit interaction (SOI) in a two-dimensional electron gas in a semiconductor quantum well arises entirely from the screened electrostatic potential of ionized donors. We adjust the wave functions of a quantum well so that electrons occupying the first (lowest) subband conserve their spin projection along the growth axis (Sz), while the electrons occupying the second subband precess due to Rashba SOI. Such a specially designed quantum well may be used as a spin relaxation trigger: electrons conserve Sz when the applied voltage (or current) is lower than a certain threshold V*; higher voltage switches on the Dyakonov-Perel spin relaxation.
255 - A. Manchon , H.C. Koo , J. Nitta 2015
In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain certain peculiarities in the electron spin resonance of two-dimensional semiconductors. Over the past thirty years, similar ideas have been leading to a vast number of predictions, discoveries, and innovative concepts far beyond semiconductors. The past decade has been particularly creative with the realizations of means to manipulate spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and with the discovery of new topological classes of materials. These developments reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures ranging from layered graphene-like materials to cold atoms. This review presents the most remarkable recent and ongoing realizations of Rashba physics in condensed matter and beyond.
Using standard quantum network method, we analytically investigate the effect of Rashba spin-orbit coupling (RSOC) and a magnetic field on the spin transport properties of a polygonal quantum ring. Using Landauer-Buttiker formula, we have found that the polarization direction and phase of transmitted electrons can be controlled by both the magnetic field and RSOC. A device to generate a spin-polarized conductance in a polygon with an arbitrary number of sides is discussed. This device would permit precise control of spin and selectively provide spin filtering for either spin up or spin down simply by interchanging the source and drain.
141 - Bin Liu , Yunyun Li , Jun Zhou 2016
We theoretically investigate the spin-dependent Seebeck effect in an Aharonov-Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin-orbit interactions under magnetic flux perpendicular to the ring. We apply the Greens function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin-orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin-orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.
155 - Jun Zhou , Biao Wang , Mengjie Li 2014
We propose a new type of the spin Seebeck effect (SSE) emerging from the Rashba spin-orbit coupling in asymmetric four-terminal electron systems. This system generates spin currents or spin voltages along the longitudinal direction parallel to the temperature gradient in the absence of magnetic fields. The remarkable result arises from the breaking of reflection symmetry along the transverse direction. In the meantime, the SSE along the transverse direction, so-called the spin Nernst effect, with spin currents or spin voltages perpendicular to the temperature gradient can be simultaneously realized in our system. We further find that it is possible to use the temperature differences between four leads to tune the spin Seebeck coefficients.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا