Do you want to publish a course? Click here

Zero differential resistance state of two dimensional electron systems in strong magnetic fields

344   0   0.0 ( 0 )
 Added by Sergey Vitkalov
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Zero differential resistance state is found in response to direct current applied to 2D electron systems at strong magnetic field and low temperatures. Transition to the state is accompanied by sharp dip of negative differential resistance, which occurs above threshold value $I_{th}$ of the direct current. The state depends significantly on the temperature and is not observable above several Kelvins. Additional analysis shows lack of the linear stability of the 2D electron systems at $I>I_{th}$ and inhomogeneous, non-stationary pattern of the electric current in the zero differential resistance state. We suggest that the dc bias induced redistribution of the 2D electrons in energy space is the dominant mechanism leading to the new electron state.

rate research

Read More

94 - J. Alicea 2004
High-mobility 2D electron systems in a perpendicular magnetic field exhibit zero resistance states (ZRS) when driven with microwave radiation. We study the nonequilibrium phase transition into this ZRS using phenomenological equations of motion to describe the current and density fluctuations. We focus on two models for the transition into a time-independent steady state. Model-I assumes rotational invariance, density conservation, and symmetry under shifting the density globally by a constant. This model is argued to describe physics on small length scales where the density does not vary appreciably from its mean. The ordered state that arises in this case breaks rotational invariance and consists of a uniform current and transverse Hall field. We discuss some properties of this state, such as stability to fluctuations and the appearance of a Goldstone mode associated with the continuous symmetry breaking. Using dynamical renormalization group techniques, we find that with short-range interactions this model can admit a continuous transition described by mean-field theory, whereas with long-range interactions the transition is driven first-order. Model-II, which assumes only rotational invariance and density conservation and is argued to be appropriate on longer length scales, is shown to predict a first-order transition with either short- or long-range interactions. We discuss implications for experiments, including scaling relations and a possible way to detect the Goldstone mode in the case of a continuous transition into the ZRS, as well as possible signatures of a first-order transition in larger samples. We also point out the connection of our work to the well-studied phenomenon of `flocking.
Effect of dc electric field on transport of highly mobile 2D electrons is studied in wide GaAs single quantum wells placed in titled magnetic fields. The study shows that in perpendicular magnetic field resistance oscillates due to electric field induced Landau-Zener transitions between quantum levels that corresponds to geometric resonances between cyclotron orbits and periodic modulation of electron density of states. Magnetic field tilt inverts these oscillations. Surprisingly the strongest inverted oscillations are observed at a tilt corresponding to nearly absent modulation of the electron density of states in regime of magnetic breakdown of semiclassical electron orbits. This phenomenon establishes an example of quantum resistance oscillations due to Landau quantization, which occur in electron systems with a constant density of states.
92 - S. Hugger , M. Cerchez , H. Xu 2007
Magnetic barriers in two-dimensional electron gases are shifted in B space by homogeneous, perpendicular magnetic fields. The magnetoresistance across the barrier shows a characteristic asymmetric dip in the regime where the polarity of the homogeneous magnetic field is opposite to that one of the magnetic barrier. The measurements are in quantitative agreement with semiclassical simulations, which reveal that the magnetoresistance originates from the interplay of snake orbits with E x B drift at the edges of the Hall bar and with elastic scattering.
We present a theory of the phonon-assisted nonlinear dc transport of 2D electrons in high Landau levels. The nonlinear dissipative resistivity displays quantum magneto-oscillations governed by two parameters which are proportional to the Hall drift velocity $v_H$ of electrons in electric field and the speed of sound $s$. In the subsonic regime, $v_H<s$, the theory quantitatively reproduces the oscillation pattern observed in recent experiments. We also find the $pi/2$ phase change of oscillations across the sound barrier $v_H=s$. In the supersonic regime, $v_H>s$, the amplitude of oscillations saturates with lowering temperature, while the subsonic region displays exponential suppression of the phonon-assisted oscillations with temperature.
The non-linear zero-differential resistance state (ZDRS) that occurs for highly mobile two-dimensional electron systems in response to a dc bias in the presence of a strong magnetic field applied perpendicular to the electron plane is suppressed and disappears gradually as the magnetic field is tilted away from the perpendicular at fixed filling factor $ u$. Good agreement is found with a model that considers the effect of the Zeeman splitting of Landau levels enhanced by the in-plane component of the magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا