No Arabic abstract
Continuous time random walks (CTRW) on finite arbitrarily inhomogeneous chains are studied. By introducing a technique of counting all possible trajectories, we derive closed-form solutions in Laplace space for the Greens function and for the first passage time probability density function (PDF) for nearest neighbor CTRWs in terms of the input waiting time PDFs. These solutions are also the Laplace space solutions of the generalized master equation (GME). Moreover, based on our counting technique, we introduce the adaptor function for expressing higher order propagators (joint PDFs of time-position variables) for CTRWs in terms of Greens functions. Using the derived formulae, an escape problem from a biased chain is considered.
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatio-temporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications in physics, but also in insurance, finance and economics. A definition is given for a class of stochastic integrals driven by a CTRW, that includes the Ito and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Ito integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral and its Ito integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Levy alpha-stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-Planck equation, that generalize the standard diffusion equation solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE, and check it by Monte Carlo.
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a non-equilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target and the characteristic transport exponents.
The usual development of the continuous time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper we address the theoretical setting of non-independent CTRWs where consecutive jumps and/or time intervals are correlated. An exact solution to the problem is obtained for the special but relevant case in which the correlation solely depends on the signs of consecutive jumps. Even in this simple case some interesting features arise such as transitions from unimodal to bimodal distributions due to correlation. We also develop the necessary analytical techniques and approximations to handle more general situations that can appear in practice.
A cornerstone of modern polymer physics is the `Flory ideality hypothesis which states that a chain in a polymer melt adopts `ideal random-walk-like conformations. Here we revisit theoretically and numerically this pivotal assumption and demonstrate that there are noticeable deviations from ideality. The deviations come from the interplay of chain connectivity and the incompressibility of the melt, leading to an effective repulsion between chain segments of all sizes $s$. The amplitude of this repulsion increases with decreasing $s$ where chain segments become more and more swollen. We illustrate this swelling by an analysis of the form factor $F(q)$, i.e. the scattered intensity at wavevector $q$ resulting from intramolecular interferences of a chain. A `Kratky plot of $q^2F(q)$ {em vs.} $q$ does not exhibit the plateau for intermediate wavevectors characteristic of ideal chains. One rather finds a conspicuous depression of the plateau, $delta(F^{-1}(q)) = |q|^3/32rho$, which increases with $q$ and only depends on the monomer density $rho$.