The usual development of the continuous time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper we address the theoretical setting of non-independent CTRWs where consecutive jumps and/or time intervals are correlated. An exact solution to the problem is obtained for the special but relevant case in which the correlation solely depends on the signs of consecutive jumps. Even in this simple case some interesting features arise such as transitions from unimodal to bimodal distributions due to correlation. We also develop the necessary analytical techniques and approximations to handle more general situations that can appear in practice.
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatio-temporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
Two utmost cases of super-extreme events influence on the velocity autocorrelation function (VAF) were considered. The VAF itself was derived within the hierarchical Weierstrass-Mandelbrot Continuous-Time Random Walk (WM-CTRW) formalism, which is able to cover a broad spectrum of continuous-time random walks. Firstly, we studied a super-extreme event in a form of a sustained drift, whose duration time is much longer than that of any other event. Secondly, we considered a super-extreme event in the form of a shock with the size and velocity much larger than those corresponding to any other event. We found that the appearance of these super-extreme events substantially changes the results determined by extreme events (the so called black swans) that are endogenous to the WM-CTRW process. For example, changes of the VAF in the latter case are in the form of some instability and distinctly differ from those caused in the former case. In each case these changes are quite different compared to the situation without super-extreme events suggesting the possibility to detect them in natural system if they occur.
A novel version of the Continuous-Time Random Walk (CTRW) model with memory is developed. This memory means the dependence between arbitrary number of successive jumps of the process, while waiting times between jumps are considered as i.i.d. random variables. The dependence was found by analysis of empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale, and justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model turns out to be exactly analytically solvable, which enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus this paper significantly extends the capabilities of the CTRW formalism.
Random walks have been successfully used to measure user or object similarities in collaborative filtering (CF) recommender systems, which is of high accuracy but low diversity. A key challenge of CF system is that the reliably accurate results are obtained with the help of peers recommendation, but the most useful individual recommendations are hard to be found among diverse niche objects. In this paper we investigate the direction effect of the random walk on user similarity measurements and find that the user similarity, calculated by directed random walks, is reverse to the initial nodes degree. Since the ratio of small-degree users to large-degree users is very large in real data sets, the large-degree users selections are recommended extensively by traditional CF algorithms. By tuning the user similarity direction from neighbors to the target user, we introduce a new algorithm specifically to address the challenge of diversity of CF and show how it can be used to solve the accuracy-diversity dilemma. Without relying on any context-specific information, we are able to obtain accurate and diverse recommendations, which outperforms the state-of-the-art CF methods. This work suggests that the random walk direction is an important factor to improve the personalized recommendation performance.
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a non-equilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target and the characteristic transport exponents.