Do you want to publish a course? Click here

Absence of skew scattering in two-dimensional systems: Testing the origins of the anomalous Hall effect

44   0   0.0 ( 0 )
 Added by Carsten Timm
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the anomalous Hall conductivity in spin-polarized, asymmetrically confined two-dimensional electron and hole systems, focusing on skew-scattering contributions to the transport. We find that the skew scattering, principally responsible for the extrinsic contribution to the anomalous Hall effect, vanishes for the two-dimensional electron system if both chiral Rashba subbands are partially occupied, and vanishes always for the two-dimensional hole gas studied here, regardless of the band filling. Our prediction can be tested with the proposed coplanar two-dimensional electron/hole gas device and can be used as a benchmark to understand the crossover from the intrisic to the extrinsic anomalous Hall effect.



rate research

Read More

The anomalous Hall effect in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling is studied within the Kubo-Streda formalism in the presence of pointlike potential impurities. We find that all contributions to the anomalous Hall conductivity vanish to leading order in disorder strength when both chiral subbands are occupied. In the situation that only the majority subband is occupied, all terms are finite in the weak scattering limit and the total anomalous Hall conductivity is dominated by skew scattering. We compare our results to previous treatments and resolve some of the discrepancies present in the literature.
Recent years have witnessed tremendous success in the discovery of topological states of matter. Particularly, sophisticated theoretical methods in time-reversal-invariant topological phases have been developed, leading to the comprehensive search of crystal database and the prediction of thousands of new topological materials. In contrast, the discovery of magnetic topological phases that break time reversal is still limited to several exemplary materials because the coexistence of magnetism and topological electronic band structure is rare in a single compound. To overcome this challenge, we propose an alternative approach to realize the quantum anomalous Hall (QAH) effect, a typical example of magnetic topological phase, via engineering two-dimensional (2D) magnetic van der Waals heterojunctions. Instead of a single magnetic topological material, we search for the combinations of two 2D (typically trivial) magnetic insulator compounds with specific band alignment so that they can together form a type-III heterojunction with topologically non-trivial band structure. By combining the data-driven materials search, first principles calculations, and the symmetry-based analytical models, we identify 8 type-III heterojunctions consisting of 2D ferromagnetic insulator materials from a family of 2D monolayer MXY compounds (M = metal atoms, X = S, Se, Te, Y = F, Cl, Br, I) as a set of candidates for the QAH effect. In particular, we directly calculate the topological invariant (Chern number) and chiral edge states in the MnNF/MnNCl heterojunction with ferromagnetic stacking. This work illustrates how data-driven material science can be combined with symmetry-based physical principles to guide the search for novel heterojunction-based quantum materials hosting the QAH effect and other exotic quantum states in general.
A short review paper for the quantum anomalous Hall effect. A substantially extended one is published as Adv. Phys. 64, 227 (2015).
Magnetic impurities play an important role in many spintronics-related materials. Motivated by this fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-dimensional electron systems with Rashba spin-orbit coupling. We find a highly nonlinear dependence on the impurity polarization, including possible sign changes. At small impurity magnetizations, this is a consequence of the remarkable result that the linear term is independent of the spin-orbit coupling strength. Near saturation of the impurity spins, the anomalous Hall conductivity can be resonantly enhanced, due to interference between potential and magnetic scattering.
69 - H. P. Wang , Wei Luo , 2017
Quantum anomalous Hall (QAH) insulator is a topological phase which exhibits chiral edge states in the absence of magnetic field. The celebrated Haldane model is the first example of QAH effect, but difficult to realize. Here, we predict the two-dimensional single-atomic-layer V2O3 with a honeycomb-Kagome structure is a QAH insulator with a large band gap (large than 0.1 eV) and a high ferromagnetic Curie temperature (about 900 K). Combining the first-principle calculations with the effective Hamiltonian analysis, we find that the spin-majority dxy and dyz orbitals of V atoms on the honeycomb lattice form a massless Dirac cone near the Fermi level which becomes massive when the on-site spin-orbit coupling is included. Interestingly, we find that the large band gap is caused by a cooperative effect of electron correlation and spin-orbit coupling. Both first-principle calculations and the effective Hamiltonian analysis confirm that 2D V2O3 has a non-zero Chern number (i.e., one). Our work paves a new direction towards realizing the QAH effect at room temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا