No Arabic abstract
We give an overview of recent experiments on an ultracold Fermi-Bose quantum gas where the interspecies interaction can be tuned via magnetic Feshbach resonances. We first describe the various steps that have led to the observation of Feshbach resonances in the K-Rb system we investigate, and their accurate characterization. We then describe experiments in which Feshbach resonances are exploited to study interaction effects and to associate weakly bound KRb dimers.
We produce a Bose-Einstein condensate of 39-K atoms. Condensation of this species with naturally small and negative scattering length is achieved by a combination of sympathetic cooling with 87-Rb and direct evaporation, exploiting the magnetic tuning of both inter- and intra-species interactions at Feshbach resonances. We explore tunability of the self-interactions by studying the expansion and the stability of the condensate. We find that a 39-K condensate is interesting for future experiments requiring a weakly interacting Bose gas.
We report on the generation of a quantum degenerate Fermi-Fermi mixture of two different atomic species. The quantum degenerate mixture is realized employing sympathetic cooling of fermionic Li-6 and K-40 gases by an evaporatively cooled bosonic Rb-87 gas. We describe the combination of trapping and cooling methods that proved crucial to successfully cool the mixture. In particular, we study the last part of the cooling process and show that the efficiency of sympathetic cooling of the Li-6 gas by Rb-87 is increased by the presence of K-40 through catalytic cooling. Due to the differing physical properties of the two components, the quantum degenerate Li-6 K-40 Fermi-Fermi mixture is an excellent candidate for a stable, heteronuclear system allowing to study several so far unexplored types of quantum matter.
We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC respectively, we show that the single particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, these prominent effects can be used to systematically probe the strongly interacting Fermi gas.
We create atom-molecule superpositions in a Bose-Fermi mixture of Rb-87 and K-40 atoms. The superpositions are generated by ramping an applied magnetic field near an interspecies Fano-Feshbach resonance to coherently couple atom and molecule states. Rabi- and Ramsey-type experiments show oscillations in the molecule population that persist as long as 150 microseconds and have up to 50% contrast. The frequencies of these oscillations are magnetic-field dependent and consistent with the predicted molecule binding energy. This quantum superposition involves a molecule and a pair of free particles with different statistics (i.e. bosons and fermions), and furthers exploration of atom-molecule coherence in systems without a Bose-Einstein condensate.
We demonstrate tuning of interactions between fermionic 40K and bosonic 87Rb atoms by Feshbach resonances and access the complete phase diagram of the harmonically trapped mixture from phase separation to collapse. On the attractive side of the resonance, we observe a strongly enhanced mean-field energy of the condensate due to the mutual mean-field confinement, predicted by a Thomas-Fermi model. As we increase heteronuclear interactions beyond a threshold, we observe an induced collapse of the mixture. On the repulsive side of the resonance, we observe vertical phase separation of the mixture in the presence of the gravitational force, thus entering a completely unexplored part of the phase diagram of the mixture. In addition, we identify the 515 G resonance as p-wave by its characteristic doublet structure.