Do you want to publish a course? Click here

Zero-bias tunneling anomaly in a clean 2D electron gas caused by smooth density variations

98   0   0.0 ( 0 )
 Added by Tigran Sedrakyan
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that smooth variations, delta n({bf r}), of the local electron concentration in a clean 2D electron gas give rise to a zero-bias anomaly in the tunnel density of states, u(omega), even in the absence of scatterers, and thus, without the Friedel oscillations. The energy width, omega_0, of the anomaly scales with the magnitude, delta n, and characteristic spatial extent, D, of the fluctuations as (delta n/D)^{2/3}, while the relative magnitude delta u/ u scales as (delta n/D). With increasing omega, the averaged delta u oscillates with omega. We demonstrate that the origin of the anomaly is a weak curving of the classical electron trajectories due to the smooth inhomogeneity of the gas. This curving suppresses the corrections to the electron self-energy which come from the virtual processes involving two electron-hole pairs



rate research

Read More

277 - Liang Liu , Jiasen Niu , Li Xiang 2014
We provide conclusive experimental evidence that zero bias anomaly in the differential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI), clarifying a long standing issue. Magnon effect that caused confusion is now excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to $ln{(eV/k_{B}T)}$, consistent with the Altshuler-Aronov theory of tunneling that describes the reduction of density of states due to EEI, but inconsistent with magnetic impurity scattering. The slope of the $ln{(eV/k_{B}T)}$ dependence is symmetry dependent: the slopes for P and AP states are different for coherent tunnel junctions with symmetry filtering, while nearly the same for those without symmetry filtering (amorphous barriers). This observation may be helpful for verifying symmetry preserved filtering in search of new coherent tunneling junctions, and for probing and separating electron Bloch states of different symmetries in other correlated systems.
It is generally believed that a point defect in graphene gives rise to an impurity state at zero energy and causes a sharp peak in the local density of states near the defect site. We revisit the defect problem in graphene and find the general consensus incorrect. By both analytic and numeric methods, we show that the contribution to the local density of states from the impurity state vanishes in the thermodynamic limit. Instead, the pronounced peak of the zero-bias anomaly is a power-law singularity $1/|E|$ from infinite resonant peaks in the low-energy regime induced by the defect. Our finding shows that the peak shall be viewed as a collective phenomenon rather than a single impurity state in previous studies.
On a high-mobility 2D electron gas we have observed, in strong magnetic fields (omega_{c} tau > 1), a parabolic negative magnetoresistance caused by electron-electron interactions in the regime of k_{B} T tau / hbar ~ 1, which is the transition from the diffusive to the ballistic regime. From the temperature dependence of this magnetoresistance the interaction correction to the conductivity delta sigma_{xx}^{ee}(T) is obtained in the situation of a long-range fluctuation potential and strong magnetic field. The results are compared with predictions of the new theory of interaction-induced magnetoresistance.
90 - B. Brun , F. Martins , S. Faniel 2016
The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.
Undoped GaAs/AlGaAs heterostructures have been used to fabricate quantum wires in which the average impurity separation is greater than the device size. We compare the behavior of the Zero-Bias Anomaly against predictions from Kondo and spin polarization models. Both theories display shortcomings, the most dramatic of which are the linear electron-density dependence of the Zero-Bias Anomaly spin-splitting at fixed magnetic field B and the suppression of the Zeeman effect at pinch-off.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا