Do you want to publish a course? Click here

Dependence of electronic structure of SrRuO3 and the degree of correlation on cation off-stoichiometry

65   0   0.0 ( 0 )
 Added by Gertjan Koster
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have grown and studied high quality SrRuO3 films grown by MBE as well as PLD. By changing the oxygen activity during deposition we were able to make SrRuO3 samples that were stoichiometric (low oxygen activity) or with ruthenium vacancies (high oxygen activity). Samples with strontium vacancies were found impossible to produce since the ruthenium would precipitate out as RuO2. The volume of the unit cell of SrRuO3 becomes larger as more ruthenium vacancies are introduced. The residual resistivity ratio (RRR) and room temperature resistivity were found to systematically depend on the volume of the unit cell and therefore on the amount of ruthenium vacancies. The RRR varied from ~30 for stoichiometric samples to less than two for samples that were very ruthenium poor. The room temperature resistivity varied from 190 microOhm cm for stoichoimetric samples to over 300 microOhm cm for very ruthenium poor samples. UPS spectra show a shift of weight from the coherent peak to the incoherent peak around the Fermi level when samples have more ruthenium vacancies. Core level XPS spectra of the ruthenium 3d lines show a strong screened part in the case of stoichiometric samples. This screened part disappears when ruthenium vacancies are introduced. Both the UPS and the XPS results are consistent with the view that correlation increases as the amount of ruthenium vacancies increase.



rate research

Read More

175 - Z.Q.Liu , M.Yang , W.M.Lu 2013
The electronic properties of SrRuO3/LaAlO3 (SRO/LAO) superlattices with different interlayer thicknesses of SRO layers were studied. As the thickness of SRO layers is reduced, the superlattices exhibit a metal-insulator transition implying transformation into a more localized state from its original bulk metallic state. The strain effect on the metal-insulator transition was also examined. The origin of the metal-insulator transition in ultrathin SRO film is discussed. All the superlattices, even those with SRO layers as thin as 2 unit cells, are ferromagnetic at low temperatures. Moreover, we demonstrate field effect devices based on such multilayer superlattice structures.
The recent discovery of superconductivity in infinite-layer nickelate films has aroused great interest since it provides a new platform to explore the mechanism of high-temperature superconductivity. However, superconductivity only appears in the thin film form and synthesizing superconducting nickelate films is extremely challenging, limiting the in-depth studies on this compound. Here, we explore the critical parameters in the growth of high quality nickelate films using molecular beam epitaxy (MBE). We found that stoichiometry is crucial in optimizing the crystalline structure and realizing superconductivity in nickelate films. In precursor NdNiO3 films, optimal stoichiometry of cations yields the most compact lattice while off-stoichiometry of cations causes obvious lattice expansion, influencing the subsequent topotactic reduction and the emergence of superconductivity in infinite-layer nickelates. Surprisingly, in-situ reflection high energy electron diffraction (RHEED) indicates that some impurity phases always appear once Sr ions are doped into NdNiO3 although the X-ray diffraction (XRD) data are of high quality. While these impurity phases do not seem to suppress the superconductivity, their impacts on the electronic and magnetic structure deserve further studies. Our work demonstrates and highlights the significance of cation stoichiometry in superconducting nickelate family.
We investigate the high temperature thermoelectric properties of Heusler alloys Fe2-xMnxCrAl (0<x<1). Substitution of 12.5% Mn at Fe-site (x = 0.25) causes a significant increase in high temperature resistivity (r{ho}) and an enhancement in the Seebeck coefficient (S), as compared to the parent alloy. However, as the concentration of Mn is increased above 0.25, a systematic decrement in the magnitude of both parameters is noted. These observations have been ascribed (from theoretical analysis) to a change in band gap and electronic structure of Fe2CrAl with Mn-substitution. Due to absence of mass fluctuations and lattice strain, no significant change in thermal conductivity is seen across this series of Heusler alloys. Additionally, S drastically changes its magnitude along with a crossover from negative to positive above 900 K, which has been ascribed to the dominance of holes over electrons in high temperature regime. In this series of alloys, S and r{ho} shows a strong dependence on the carrier concentration and strength of d-d hybridization between Fe/Mn and Cr atoms.
The effects of tetragonal strain on electronic and magnetic properties of strontium-doped lanthanum manganite, La_{2/3}Sr_{1/3}MnO_3 (LSMO), are investigated by means of density-functional methods. As far as the structural properties are concerned, the comparison between theory and experiments for LSMO strained on the most commonly used substrates, shows an overall good agreement: the slight overestimate (at most of 1-1.5 %) for the equilibrium out-of-plane lattice constants points to possible defects in real samples. The inclusion of a Hubbard-like contribution on the Mn d states, according to the so-called LSDA+U approach, is rather ineffective from the structural point of view, but much more important from the electronic and magnetic point of view. In particular, full half-metallicity, which is missed within a bare density-functional approach, is recovered within LSDA+U, in agreement with experiments. Moreover, the half-metallic behavior, particularly relevant for spin-injection purposes, is independent on the chosen substrate and is achieved for all the considered in-plane lattice constants. More generally, strain effects are not seen to crucially affect the electronic structure: within the considered tetragonalization range, the minority gap is only slightly (i.e. by about 0.1-0.2 eV) affected by a tensile or compressive strain. Nevertheless, we show that the growth on a smaller in-plane lattice constant can stabilize the out-of-plane vs in-plane e_g orbital and significatively change their relative occupancy. Since e_g orbitals are key quantities for the double-exchange mechanism, strain effects are confirmed to be crucial for the resulting magnetic coupling.
The spinel-structured lithium manganese oxide (LiMn$_2$O$_4$) is a material currently used as cathode for secondary lithium-ion batteries, but whose properties are not yet fully understood. Here, we report a computational investigation of the inversion thermodynamics and electronic behaviour of LiMn$_2$O$_4$ derived from spin-polarised density functional theory calculations with a Hubbard Hamiltonian and long-range dispersion corrections (DFT+$U-$D3). Based on the analysis of the configurational free energy, we have elucidated a partially inverse equilibrium cation distribution for the LiMn$_2$O$_4$ spinel. This equilibrium degree of inversion is rationalised in terms of the crystal field stabilisation effects and the difference between the size of the cations. We compare the atomic charges with the oxidation numbers for each degree of inversion. We found segregation of the Mn charge once these ions occupy the tetrahedral and octahedral sites of the spinel. We have obtained the atomic projections of the electronic band structure and density of states, showing that the normal LiMn$_2$O$_4$ has half-metallic properties, while the fully inverse spinel is an insulator. This material is in the ferrimagnetic state for the inverse and partially inverse cation arrangement. The optimised lattice and oxygen parameters, as well as the equilibrium degree of inversion, are in agreement with the available experimental data. The partially inverse equilibrium degree of inversion is important in the interpretation of the lithium ion migration and surface properties of the LiMn$_2$O$_4$ spinel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا