Do you want to publish a course? Click here

Impact of Cation Stoichiometry on the Crystalline Structure and Superconductivity in Nickelates

376   0   0.0 ( 0 )
 Added by Yueying Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent discovery of superconductivity in infinite-layer nickelate films has aroused great interest since it provides a new platform to explore the mechanism of high-temperature superconductivity. However, superconductivity only appears in the thin film form and synthesizing superconducting nickelate films is extremely challenging, limiting the in-depth studies on this compound. Here, we explore the critical parameters in the growth of high quality nickelate films using molecular beam epitaxy (MBE). We found that stoichiometry is crucial in optimizing the crystalline structure and realizing superconductivity in nickelate films. In precursor NdNiO3 films, optimal stoichiometry of cations yields the most compact lattice while off-stoichiometry of cations causes obvious lattice expansion, influencing the subsequent topotactic reduction and the emergence of superconductivity in infinite-layer nickelates. Surprisingly, in-situ reflection high energy electron diffraction (RHEED) indicates that some impurity phases always appear once Sr ions are doped into NdNiO3 although the X-ray diffraction (XRD) data are of high quality. While these impurity phases do not seem to suppress the superconductivity, their impacts on the electronic and magnetic structure deserve further studies. Our work demonstrates and highlights the significance of cation stoichiometry in superconducting nickelate family.



rate research

Read More

78 - Junjie Zhang , Xutang Tao 2021
In strongly correlated materials, lattice, charge, spin and orbital degrees of freedom interact with each other, leading to emergent physical properties such as superconductivity, colossal magnetic resistance and metal-insulator transition. Quasi-2D square planar nickelates, Rn+1NinO2n+2 (R=rare earth, n=2, 3...), are of significant interest and long sought for cuprate analogue due to the 3d9 electronic configuration of Ni+, the same as the active ion Cu2+ in the high-Tc superconducting cuprates. The field has attracted intense attention since 2019 due to the discovery of superconductivity in thin films of Nd0.8Sr0.2NiO2, although no superconductivity has been reported in bulk polycrystalline powders. Herein, we review the synthesis of polycrystalline powders of quasi-2D square planar nickelates through topotactic reduction of parent compounds that are synthesized via solid state reaction, precursor method, high pressure floating zone method and high-pressure flux method. We emphasize single crystal preparation using the high-pressure floating zone techniques. We discuss their crystal structure and physical properties including resistivity, magnetic susceptibility and heat capacity. We highlight the cuprate-like physics, including charge/spin stripes and large orbital polarization, identified in single crystals of R4Ni3O8 (R=La and Pr) combining synchrotron X-ray/neutron single crystal diffraction and density functional theory calculations. Furthermore, the challenges and possible research directions of this fast-moving field in the future are briefly discussed.
Two superconducting phases of Re3W have been found with different physical properties. One phase crystallizes in a non-centrosymmetric cubic (alpha-Mn) structure and has a superconducting transition temperature, Tc, of 7.8 K. The other phase has a hexagonal centrosymmetric structure and is superconducting with a Tc of 9.4 K. Switching between the two phases is possible by annealing the sample or remelting it. The properties of both phases of Re3W have been characterized by powder neutron diffraction, magnetization, and resistivity measurements. The temperature dependence of the lower and the upper critical fields have been measured for both phases. These are used to determine the penetration depths and the coherence lengths for these systems.
223 - Xu Liu , Defa Liu , Wenhao Zhang 2014
The latest discovery of possible high temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate, together with the observation of its unique electronic structure and nodeless superconducting gap, has generated much attention. Initial work also found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer FeSe/SrTiO3 film shows an insulating behavior. Such a dramatic difference between the single-layer and double-layer FeSe/SrTiO3 films is surprising and the underlying origin remains unclear. Here we report our comparative study between the single-layer and double-layer FeSe/SrTiO3 films by performing a systematic angle-resolved photoemission study on the samples annealed in vacuum. We find that, like the single-layer FeSe/SrTiO3 film, the as-prepared double-layer FeSe/SrTiO3 film is insulating and possibly magnetic, thus establishing a universal existence of the magnetic phase in the FeSe/SrTiO3 films. In particular, the double-layer FeSe/SrTiO3 film shows a quite different doping behavior from the single-layer film in that it is hard to get doped and remains in the insulating state under an extensive annealing condition. The difference originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the origin of superconductivity and the doping mechanism in the FeSe/SrTiO3 films. The property disparity between the single-layer and double-layer FeSe/SrTiO3 films may facilitate to fabricate electronic devices by making superconducting and insulating components on the same substrate under the same condition.
Local quasiparticle states around impurities provide essential insight into the mechanism of unconventional superconductivity, especially when the candidate materials are proximate to an antiferromagnetic Mott-insulating phase. While such states have been reported in atom-based cuprates and iron-based compounds, they are unexplored in organic superconductors which feature tunable molecular orientation. Here we employ scanning tunneling microscopy and spectroscopy to reveal multiple forms of robustness of an exotic $s$-wave superconductivity in epitaxial Rb$_3$C$_{60}$ films against merohedral disorder, non-magnetic single impurities and step edges at the atomic scale. Also observed have been Yu-Shiba-Rusinov (YSR) states induced by deliberately incurred Fe adatoms that act as magnetic scatters. The bound states display abrupt spatial decay and vary in energy with the Fe adatom registry. Our results and the universal optimal superconductivity at half-filling point towards local electron pairing in which the multiorbital electronic correlations and intramolecular phonons together drive the high-temperature superconductivity of doped fullerenes.
We report detailed investigations of the properties of a superconductor obtained by substituting In at the Sn site in the topological crystalline insulator (TCI), SnTe. Transport, magnetization and heat capacity measurements have been performed on crystals of Sn0.6In0.4Te, which is shown to be a bulk superconductor with Tc(onset) at ~4.70(5) K and Tc(zero) at ~3.50(5) K. The upper and lower critical fields are estimated to be {mu}0Hc2(0) = 1.42(3) T and {mu}0Hc1(0) = 0.90(3) mT respectively, while {kappa} = 56.4(8) indicates this material is a strongly type II superconductor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا