Do you want to publish a course? Click here

Electrodynamics near the Metal-to-Insulator Transition in V3O5

209   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electrodynamics near the metal-to-insulator transitions (MIT) induced, in V3O5 single crystals, by both temperature (T) and pressure (P) has been studied by infrared spectroscopy. The T- and P-dependence of the optical conductivity may be explained within a polaronic scenario. The insulating phase at ambient T and P corresponds to strongly localized small polarons. Meanwhile the T-induced metallic phase at ambient pressure is related to a liquid of polarons showing incoherent dc transport, in the P-induced metallic phase at room T strongly localized polarons coexist with partially delocalized ones. The electronic spectral weight is almost recovered, in both the T and P induced metallization processes, on an energy scale of 1 eV, thus supporting the key-role of electron-lattice interaction in the V3O5 metal-to-insulator transition.



rate research

Read More

72 - K.P. Li , Dragana Popovic , 1997
Measurements of conductance $G$ on short, wide, high-mobility Si-MOSFETs reveal both a two-dimensional metal-insulator transition (MIT) at moderate temperatures (1 $<~ T <$ 4~K) and mesoscopic fluctuations of the conductance at low temperatures ($T~ <$ 1~K). Both were studied as a function of chemical potential (carrier concentration $n_s$) controlled by gate voltage ($V_g$) and magnetic field $B$ near the MIT. Fourier analysis of the low temperature fluctuations reveals several fluctuation scales in $V_g$ that vary non-monotonically near the MIT. At higher temperatures, $G(V_g,B)$ is similar to large FETs and exhibits a MIT. All of the observations support the suggestion that the MIT is driven by Coulomb interactions among the carriers.
We report x-ray scattering studies of the c-axis lattice parameter in Ca3Ru2O7 as a function of temperature and magnetic field. These structural studies complement published transport and magnetization data, and therefore elucidate the spin-charge-lattice coupling near the metal-insulator transition. Strong anisotropy of the structural change for field applied along orthogonal in-plane directions is observed. Competition between a spin-polarized phase that does not couple to the lattice, and an antiferromagnetic metallic phase, which does, gives rise to rich behavior for B $parallel$ b.
We use polarization- and temperature-dependent x-ray absorption spectroscopy, in combination with photoelectron microscopy, x-ray diffraction and electronic transport measurements, to study the driving force behind the insulator-metal transition in VO2. We show that both the collapse of the insulating gap and the concomitant change in crystal symmetry in homogeneously strained single-crystalline VO2 films are preceded by the purely-electronic softening of Coulomb correlations within V-V singlet dimers. This process starts 7 K (+/- 0.3 K) below the transition temperature, as conventionally defined by electronic transport and x-ray diffraction measurements, and sets the energy scale for driving the near-room-temperature insulator-metal transition in this technologically-promising material.
We present an angle-resolved photoemission study of the electronic structure of the three-dimensional pyrochlore iridate Nd2Ir2O7 through its magnetic metal-insulator transition. Our data reveal that metallic Nd2Ir2O7 has a quadratic band, touching the Fermi level at the Gamma point, similarly to that of Pr2Ir2O7. The Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates. Upon cooling below the transition temperature, this compound exhibits a gap opening with an energy shift of quasiparticle peaks like a band gap insulator. The quasiparticle peaks are strongly suppressed, however, with further decrease of temperature, and eventually vanish at the lowest temperature, leaving a non-dispersive flat band lacking long-lived electrons. We thereby identify a remarkable crossover from Slater to Mott insulators with decreasing temperature. These observations explain the puzzling absence of Weyl points in this material, despite its proximity to the zero temperature metal-insulator transition.
138 - H. Fehske , S. Ejima , G. Wellein 2011
To understand how charge transport is affected by a background medium and vice versa we study a two-channel transport model which captures this interplay via a novel, effective fermion-boson coupling. By means of (dynamical) DMRG we prove that this model exhibits a metal-insulator transition at half-filling, where the metal typifies a repulsive Luttinger liquid and the insulator constitutes a charge density wave. The quantum phase transition point is determined consistently from the calculated photoemission spectra, the scaling of the Luttinger liquid exponent, the charge excitation gap, and the entanglement entropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا