Do you want to publish a course? Click here

Loading chromium atoms in a magnetic guide

48   0   0.0 ( 0 )
 Added by Alexander Greiner
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have realized a magnetic guide for ultracold chromium atoms by continuously loading atoms directly from a Zeeman slower into a horizontal guide. We observe an atomic flux of $2 cdot 10^7$ atoms/s and are able to control the mean velocity of the guided atoms between 0 m/s and 3 m/s. We present our experimental results on loading and controlling the mean velocity of the guided atoms and discuss the experimental techniques that are used.



rate research

Read More

We study the guiding of $^{87}$Rb 59D$_{5/2}$ Rydberg atoms in a linear, high-gradient, two-wire magnetic guide. Time delayed microwave ionization and ion detection are used to probe the Rydberg atom motion. We observe guiding of Rydberg atoms over a period of 5 ms following excitation. The decay time of the guided atom signal is about five times that of the initial state. We attribute the lifetime increase to an initial phase of $l$-changing collisions and thermally induced Rydberg-Rydberg transitions. Detailed simulations of Rydberg atom guiding reproduce most experimental observations and offer insight into the internal-state evolution.
The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$mu$}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in the past and can now be studied experimentally. Besides these phenomena, the large dipole moment leads to a breakdown of standard methods for the creation of a chromium BEC. Cooling and trapping methods had to be adapted to the special electronic structure of chromium to reach the regime of quantum degeneracy. Some of them apply generally to gases with large dipolar forces. We present here a detailed discussion of the experimental techniques which are used to create a chromium BEC and alow us to produce pure condensates with up to {$10^5$} atoms in an optical dipole trap. We also describe the methods used to determine the trapping parameters.
We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which will make studies of the effects of anisotropic long-range interactions in degenerate quantum gases possible. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a critical temperature of T~700nK, we observe Bose-Einstein condensation by the appearance of a two-component velocity distribution. Released from an anisotropic trap, the condensate expands with an inversion of the aspect ratio. We observe critical behavior of the condensate fraction as a function of temperature and more than 50,000 condensed 52Cr atoms.
We report on the production of a novel cold mixture of fermionic $^{53}$Cr and $^{6}$Li atoms delivered by two Zeeman-slowed atomic beams and collected within a magneto-optical trap (MOT). For lithium, we obtain clouds of up to $4 ,10^8$ atoms at temperatures of about $500,mu$K. A gray optical molasses stage allows us to decrease the gas temperature down to $45(5),mu$K. For chromium, we obtain MOTs comprising up to $1.5, 10^6$ atoms. The availability of magnetically trappable metastable $D$-states, from which $P$-state atoms can radiatively decay onto, enables to accumulate into the MOT quadrupole samples of up to $10^7$ $^{53}$Cr atoms. After repumping $D$-state atoms back into the cooling cycle, a final cooling stage decreases the chromium temperature down to $145(5),mu$K. While the presence of a lithium MOT decreases the lifetime of magnetically trapped $^{53}$Cr atoms, we obtain, within a 5 seconds duty cycle, samples of about $4, 10^6$ chromium and $1.5,10^8$ lithium atoms. Our work provides a crucial step towards the production of degenerate Cr-Li Fermi mixtures.
107 - T. David 2008
We analyze atom-surface magnetic interactions on atom chips where the magnetic trapping potentials are produced by current carrying wires made of electrically anisotropic materials. We discuss a theory for time dependent fluctuations of the magnetic potential, arising from thermal noise originating from the surface. It is shown that using materials with a large electrical anisotropy results in a considerable reduction of heating and decoherence rates of ultra-cold atoms trapped near the surface, of up to several orders of magnitude. The trap loss rate due to spin flips is expected to be significantly reduced upon cooling the surface to low temperatures. In addition, the electrical anisotropy significantly suppresses the amplitude of static spatial potential corrugations due to current scattering within imperfect wires. Also the shape of the corrugation pattern depends on the electrical anisotropy: the preferred angle of the scattered current wave fronts can be varied over a wide range. Materials, fabrication, and experimental issues are discussed, and specific candidate materials are suggested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا