Do you want to publish a course? Click here

Guiding of Rydberg atoms in a high-gradient magnetic guide

196   0   0.0 ( 0 )
 Added by Mallory Traxler
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the guiding of $^{87}$Rb 59D$_{5/2}$ Rydberg atoms in a linear, high-gradient, two-wire magnetic guide. Time delayed microwave ionization and ion detection are used to probe the Rydberg atom motion. We observe guiding of Rydberg atoms over a period of 5 ms following excitation. The decay time of the guided atom signal is about five times that of the initial state. We attribute the lifetime increase to an initial phase of $l$-changing collisions and thermally induced Rydberg-Rydberg transitions. Detailed simulations of Rydberg atom guiding reproduce most experimental observations and offer insight into the internal-state evolution.



rate research

Read More

We demonstrate the guiding of neutral atoms by the magnetic fields due to microfabricated current-carrying wires on a chip. Atoms are guided along a magnetic field minimum parallel to and above the current-carrying wires. Two waveguide configurations are demonstrated: one using two wires with an external magnetic field, and a second using four wires without an external field. These waveguide geometries can be extended to integrated atom optics circuits, including beamsplitters.
Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly-excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom-ion systems, and set the stage for alkaline-earth based quantum computing architectures.
We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the optical-lattice depth. The effect of lattice-induced PI on Rydberg-atom lifetime ranges from noticeable to highly dominant when compared with natural decay. The PI behavior is governed by the generally rapid decrease of the PI cross sections as a function of angular-momentum ($ell$), and by lattice-induced $ell$-mixing across the optical-lattice PECs. In GHz-deep lattices, $ell$-mixing leads to a rich PEC structure, and the significant low-$ell$ PI cross sections are distributed over many lattice-mixed Rydberg states. In lattices less than several tens-of-MHz deep, atoms on low-$ell$ PECs are essentially $ell$-mixing-free and maintain large PI cross sections, while atoms on high-$ell$ PECs trend towards being PI-free. Characterization of PI in GHz-deep Rydberg-atom lattices may be beneficial for optical control and quantum-state manipulation of Rydberg atoms, while data on PI in shallower lattices are potentially useful in high-precision spectroscopy and quantum-computing applications of lattice-confined Rydberg atoms.
We have realized a magnetic guide for ultracold chromium atoms by continuously loading atoms directly from a Zeeman slower into a horizontal guide. We observe an atomic flux of $2 cdot 10^7$ atoms/s and are able to control the mean velocity of the guided atoms between 0 m/s and 3 m/s. We present our experimental results on loading and controlling the mean velocity of the guided atoms and discuss the experimental techniques that are used.
We present a novel spectroscopic method for probing the insitu~density of quantum gases. We exploit the density-dependent energy shift of highly excited {Rydberg} states, which is of the order $10$MHz,/,1E14,cm$^{text{-3}}$ for rubidium~for triplet s-wave scattering. The energy shift combined with a density gradient can be used to localize Rydberg atoms in density shells with a spatial resolution less than optical wavelengths, as demonstrated by scanning the excitation laser spatially across the density distribution. We use this Rydberg spectroscopy to measure the mean density addressed by the Rydberg excitation lasers, and to monitor the phase transition from a thermal gas to a Bose-Einstein condensate (BEC).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا