Do you want to publish a course? Click here

Electron Density Dependence of in-plane Spin Relaxation Anisotropy in GaAs/AlGaAs Two-Dimensional Electron Gas

77   0   0.0 ( 0 )
 Added by Baoli Liu
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the spin dynamics of two-dimensional electrons in (001) GaAs/AlGaAs heterostructure using the time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic below 150k due to the interference of Rashba and Dresselhaus spin-orbit coupling and Dyakonov-Perel spin relaxation. The ratio of in-plane spin lifetimes is measured directly as a function of temperature and pump power, showing that the electron density in 2DEG channel strongly affects the Rashba spin-orbit coupling.



rate research

Read More

We study the spin dynamics in a high-mobility two-dimensional electron gas confined in a GaAs/AlGaAs quantum well. An unusual magnetic field dependence of the spin relaxation is found: as the magnetic field becomes stronger, the spin relaxation time first increases quadratically but then changes to a linear dependence, before it eventually becomes oscillatory, whereby the longitudinal and transverse times reach maximal values at even and odd filling Landau level factors, respectively. We show that the suppression of spin relaxation is due to the effect of electron gyration on the spin-orbit field, while the oscillations correspond to oscillations of the density of states appearing at low temperatures and high magnetic fields. The transition from quadratic to linear dependence can be related to a transition from classical to Bohm diffusion and reflects an anomalous behavior of the two-dimensional electron gas analogous to that observed in magnetized plasmas.
How does an initially homogeneous spin-polarization in a confined two-dimensional electron gas with Rashba spin-orbit coupling evolve in time? How does the relaxation time depend on system size? We study these questions for systems of a size that is much larger than the Fermi wavelength, but comparable and even shorter than the spin relaxation length. Depending on the confinement spin-relaxation may become faster or slower than in the bulk. An initially homogeneously polarized spin system evolves into a spiral pattern.
138 - M. Studer , S. Schon , K. Ensslin 2009
Using time-resolved Faraday rotation, the drift-induced spin-orbit Field of a two-dimensional electron gas in an InGaAs quantum well is measured. Including measurements of the electron mobility, the Dresselhaus and Rashba coefficients are determined as a function of temperature between 10 and 80 K. By comparing the relative size of these terms with a measured in-plane anisotropy of the spin dephasing rate, the Dyakonv-Perel contribution to spin dephasing is estimated. The measured dephasing rate is significantly larger than this, which can only partially be explained by an inhomogeneous g-factor.
We study the transport properties of the two-dimensional electron gas in AlGaAs/GaAs heterostructures in parallel to the interface magnetic fields at low temperatures. The magnetoresistance in the metallic phase is found to be positive and weakly anisotropic with respect to the orientation of the in-plane magnetic field and the current through the sample. At low electron densities ($n_s< 5times 10^{10}$ cm$^{-2}$) the experimental data can be described adequately within spin-related approach while at high $n_s$ the magnetoresistance mechanism changes as inferred from $n_s$-independence of the normalized magnetoresistance.
A metal-insulator transition in two-dimensional electron gases at B=0 is found in Ga(Al)As heterostructures, where a high density of self-assembled InAs quantum dots is incorporated just 3 nm below the heterointerface. The transition occurs at resistances around h/e^2 and critical carrier densities of 1.2 10^11cm^-2. Effects of electron-electron interactions are expected to be rather weak in our samples, while disorder plays a crucial role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا