Do you want to publish a course? Click here

Spin-modulated quasi-1D antiferromagnet LiCuVO_4

97   0   0.0 ( 0 )
 Added by Norbert Buettgen
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on magnetic resonance studies within the magnetically ordered phase of the quasi-1D antiferromagnet LiCuVO_4. Our studies reveal a spin reorientational transition at a magnetic field H_c1 ~ 25 kOe applied within the crystallographical (ab)-plane in addition to the recently observed one at H_c2 ~75 kOe [ M.G. Banks et al., cond-mat/0608554 (2006)]. Spectra of the antiferromagnetic resonance (AFMR) along low-frequency branches can be described in the frame of a macroscopic theory of exchange-rigid planar magnetic structures. These data allow to obtain the anisotropy of the exchange interaction together with a constant of the uniaxial anisotropy. Spectra of 7Li nuclear magnetic resonance (NMR) show that, within the magnetically ordered phase of LiCuVO_4 in the low-field range H < H_c1, a planar spiral spin structure is realized with the spins lying in the (ab)-plane in agreement with neutron scattering studies of B.J. Gibson et al. [Physica B Vol. 350, 253 (2004)]. Based on NMR spectra simulations, the transition at H_c1 can well be described as a spin-flop transition, where the spin plane of the magnetically ordered structure rotates to be perpendicular to the direction of the applied magnetic field. For H > H_c2 ~ 75 kOe, our NMR spectra simulations show that the magnetically ordered structure exhibits a modulation of the spin projections along the direction of the applied magnetic field H.



rate research

Read More

We report on NMR studies of the quasi one--dimensional (1D) antiferromagnetic $S=1/2$ chain cuprate LiCuVO$_4$ in magnetic fields $H$ up to $mu_0H$ = 30 T ($approx 70$% of the saturation field $H_{rm sat}$). NMR spectra in fields higher than $H_{rm c2}$ ($mu_0H_{rm c2} approx 7.5$ T) and temperatures $T<T_{rm N}$ can be described within the model of a spin-modulated phase in which the magnetic moments are aligned parallel to the applied field $H$ and their values alternate sinusoidally along the magnetic chains. Based on theoretical concepts about magnetically frustrated 1D chains, the field dependence of the modulation strength of the magnetic structure is deduced from our experiments. Relaxation time $T_2$ measurements of the $^{51}$V nuclei show that $T_2$ depends on the particular position of the probing $^{51}$V nucleus with respect to the magnetic copper moments within the 1D chains: the largest $T_2$ value is observed for the vanadium nuclei which are very next to the magnetic Cu$^{2+}$ ion with largest ordered magnetic moment. This observation is in agreement with the expectation for the spin-modulated magnetic structure. The $(H,T)$ magnetic phase diagram of LiCuVO$_4$ is discussed.
Electron spin resonance experiments in the quasi-1D S=1/2 antiferromagnet K$_2$CuSO$_4$Cl$_2$ reveal opening of a gap in absence of magnetic ordering, as well as an anisotropic shift of the resonance magnetic field. These features of magnetic excitation spectrum are explained by a crossover between a gapped spinon-type doublet ESR formed in a 1D antiferromagnet with uniform Dzyaloshinskii-Moriya interaction and a Larmor-type resonance of a quasi-1D Heisenberg system
487 - K. Yamaura 2007
NaV2O4 crystals were grown under high pressure using a NaCl flux, and the crystals were characterized with X-ray diffraction, electrical resistivity, heat capacity, and magnetization. The structure of NaV2O4 consists of double chains of edge-sharing VO6 octahedra. The resistivity is highly anisotropic, with the resistivity perpendicular to the chains more than 20 times greater than that parallel to the chains. Magnetically, the intrachain interactions are ferromagnetic and the interchain interactions are antiferromagnetic; 3D antiferromagnetic order is established at 140 K. First principles electronic structure calculations indicate that the chains are half metallic. Interestingly, the case of NaV2O4 seems to be a quasi-1D analogue of what was found for half-metallic materials.
We study the anisotropic quantum Heisenberg antiferromagnet for spin-1/2 that interpolates smoothly between the one-dimensional (1D) and the two-dimensional (2D) limits. Using the spin Hartree-Fock approach we construct a quantitative theory of heat capacity in the quasi-1D regime with a finite coupling between spin chains. This theory reproduces closely the exact result of Bethe Ansatz in the 1D limit and does not produces any spurious phase transitions for any anisotropy in the quasi-1D regime at finite temperatures in agreement with the Mermin-Wagner theorem. We study the static spin-spin correlation function in order to analyse the interplay of lattice geometry and anisotropy in these systems. We compare the square and triangular lattice. For the latter we find that there is a quantum transition point at an intermediate anisotropy of $sim0.6$. This quantum phase transition establishes that the quasi-1D regime extends upto a particular point in this geometry. For the square lattice the change from the 1D to 2D occurs smoothly as a function of anisotropy, i.e. it is of the crossover type. Comparing the newly developed theory to the available experimental data on the heat capacity of $rm{Cs}_2rm{CuBr}_4$ and $rm{Cs}_2rm{CuCl}_4$ we extract the microscopic constants of the exchange interaction that previously could only be measured using inelastic neutron scattering in high magnetic fields.
292 - S. Kimura , M. Matsuda , T. Masuda 2008
From neutron diffraction measurements on a quasi-1D Ising-like Co$^{rm 2+}$ spin compound BaCo$_{rm 2}$V$_{rm 2}$O$_{rm 8}$, we observed an appearance of a novel type of incommensurate ordering in magnetic fields. This ordering is essentially different from the N{ e}el-type ordering, which is expected for the classical system, and is caused by quantum fluctuation inherent in the quantum spin chain. A Tomonaga-Luttinger liquid (TLL) nature characteristic of the gapless quantum 1D system is responsible for the realization of the incommensurate ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا