We study thermal rectifying effect in two dimensional (2D) systems consisting of the Frenkel Kontorva (FK) lattice and the Fermi-Pasta-Ulam (FPU) lattice. It is found that the rectifying effect is related to the asymmetrical interface thermal resistance. The rectifying efficiency is typically about two orders of magnitude which is large enough to be observed in experiment. The dependence of rectifying efficiency on the temperature and temperature gradient is studied. The underlying mechanism is found to be the match and mismatch of the spectra of lattice vibration in two parts.
We study heat conduction in one dimensional (1D) anharmonic lattices analytically and numerically by using an effective phonon theory. It is found that every effective phonon mode oscillates quasi-periodically. By weighting the power spectrum of the total heat flux in the Debye formula, we obtain a unified formalism that can explain anomalous heat conduction in momentum conserved lattices without on-site potential and normal heat conduction in lattices with on-site potential. Our results agree very well with numerical ones for existing models such as the Fermi-Pasta-Ulam model, the Frenkel-Kontorova model and the $phi^4$ model etc.
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
We present a framework to elucidate the existence of accidental contacts of energy bands, particularly those called Dirac points which are the point contacts with linear energy dispersions in their vicinity. A generalized von-Neumann-Wigner theorem we propose here gives the number of constraints on the lattice necessary to have contacts without fine tuning of lattice parameters. By counting this number, one could quest for the candidate of Dirac systems without solving the secular equation. The constraints can be provided by any kinds of symmetry present in the system. The theory also enables the analytical determination of k-point having accidental contact by selectively picking up only the degenerate solution of the secular equation. By using these frameworks, we demonstrate that the Dirac points are feasible in various two-dimensional lattices, e.g. the anisotropic Kagome lattice under inversion symmetry is found to have contacts over the whole lattice parameter space. Spin-dependent cases, such as the spin-density-wave state in LaOFeAs with reflection symmetry, are also dealt with in the present scheme.
The modes of vibrations in honeycomb and auxetic structures are studied, with models in which the lattice is represented by a planar network where sites are connected by strings and rigid rods. The auxetic network is obtained modifying a model proposed by Evans et al. in 1991, and used to explain the negative Poissons ratio of auxetic materials. This relevant property means that the materials have a lateral extension, instead to shrink, when they are stretched. For what concerns the acoustic properties of these structures, they absorb noise and vibrations more efficiently than non-auxetic equivalents. The acoustic and optical dispersions obtained in the case of the auxetic model are compared with the dispersions displayed by a conventional honeycomb network. It is possible to see that the phonon dispersions of the auxetic model possess a complete bandgap and that the Goldstone mode group velocity is strongly dependent on the direction of propagation. The presence of a complete bandgap can explain some experimental observations on the sound propagation properties of the auxetic materials.
A mechanism of point defect migration triggered by local depolarization fields is shown to explain some still inexplicable features of aging in acceptor doped ferroelectrics. A drift-diffusion model of the coupled charged defect transport and electrostatic field relaxation within a two-dimensional domain configuration is treated numerically and analytically. Numerical results are given for the emerging internal bias field of about 1 kV/mm which levels off at dopant concentrations well below 1 mol%; the fact, long ago known experimentally but still not explained. For higher defect concentrations a closed solution of the model equations in the drift approximation as well as an explicit formula for the internal bias field is derived revealing the plausible time, temperature and concentration dependencies of aging. The results are compared to those due to the mechanism of orientational reordering of defect dipoles.