No Arabic abstract
We report the results of a $^{45}$Sc nuclear magnetic resonance (NMR) study on the quasi-one-dimensional compound Cu$_2$Sc$_2$Ge$_4$O$_{13}$ at temperatures between 4 and 300 K. This material has been a subject of current interest due to indications of spin gap behavior. The temperature-dependent NMR shift exhibits a character of low-dimensional magnetism with a negative broad maximum at $T_{max}$ $simeq $ 170 K. Below $% T_{max}$, the NMR shifts and spin lattice relaxation rates clearly indicate activated responses, confirming the existence of a spin gap in Cu$_2$Sc$_2$Ge% $_4$O$_{13}$. The experimental NMR data can be well fitted to the spin dimer model, yielding a spin gap value of about 275 K which is close to the 25 meV peak found in the inelastic neutron scattering measurement. A detailed analysis further points out that the nearly isolated dimer picture is proper for the understanding of spin gap nature in Cu$_2$Sc$_2$Ge$_4$O$_{13}$.
Cu$_2$Fe$_2$Ge$_4$O$_{13}$ is a bicomponent compound that consists of Cu dimers and Fe chains with separate energy scale. By inelastic neutron scattering technique with high-energy resolution we observed the indirect Fe - Fe exchange coupling by way of the Cu dimers. The obtained parameters of the effective indirect interaction and related superexchange interactions are consistent with those estimated semi-statically. The consistency reveals that the Cu dimers play the role of nonmagnetic media in the indirect magnetic interaction.
We study $S=1/2$ dimer excitation in a coupled chain and dimer compound Cu$_2$Fe$_2$Ge$_4$O$_{13} by inelastic neutron scattering technique. The Zeeman split of the dimer triplet by a staggered field is observed at low temperature. With the increase of temperature the effect of random field is detected by a drastic broadening of the triplet excitation. Basic dynamics of dimer in the staggered and random fields are experimentally identified in Cu$_2$Fe$_2$Ge$_4$O$_{13}.
The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu$_2$Fe$_2$Ge$_4$O$_{13}$ are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presence of a magnetic dimerization concomitant with the tetragonal-to-triclinic structural distortion occurring below 125 K, neutron scattering experiments reveal the presence of dispersive triplet excitations above a spin gap of $Delta = 10.6$ meV at 1.5 K, a value consistent with the estimates extracted from magnetic susceptibility. The likely detection of these spin excitations in infrared spectroscopy is explained by invoking a dynamic Dzyaloshinskii-Moriya mechanism in which light is coupled to the dimer singlet-to-triplet transition through an optical phonon. These results are qualitatively explained by exact diagonalization and higher-order perturbation calculations carried out on the basis of the dimerized spin Hamiltonian derived from first-principles.
We present nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements performed on single crystalline ccag{}, a member of a recently discovered family of heavy fermion materials Ce$_2M$Al$_7$Ge$_4$ ($M$ = Co, Ir, Ni, or Pd). Previous measurements indicated a strong Kondo interaction as well as magnetic order below $T_M = 1.8$ K. Our NMR spectral measurements show that the Knight shift $K$ is proportional to the bulk magnetic susceptibility $chi$ at high temperatures. A clear Knight shift anomaly ($K otpropto chi$) is observed at coherence temperatures $T^* sim 17.5$ K for $H_0 parallel hat{c}$ and 10 K for $H_0 parallel hat{a}$ at the ${}^{59}$Co site, and $T^* sim 12.5$ K at the ${}^{27}$Al(3) site for $H_0 parallel hat{a}$ characteristic of the heavy fermion nature of this compound. At high temperatures the ${}^{59}$Co NMR spin-lattice relaxation rate $T_1^{-1}$ is dominated by spin fluctuations of the 4$f$ local moments with a weak metallic background. The spin fluctuations probed by ${}^{59}$Co NMR are anisotropic and larger in the basal plane than in the $c$ direction. Furthermore, we find $(T_1TK)^{-1} propto T^{-1/2}$ at the ${}^{59}$Co site as expected for a Kondo system for $T > T^*$ and $T> T_K$. ${}^{59}$Co NQR slrr{} measurements at low temperatures indicate slowing down of spin fluctuations above the magnetic ordering temperature $T_M sim 1.8$ K. A weak ferromagnetic character of fluctuations around $mathbf{q}=0$ is evidenced by an increase of $chi T$ versus $T$ above the magnetic ordering temperature. We also find good agreement between the observed and calculated electric field gradients at all observed sites.