Do you want to publish a course? Click here

Indirect magnetic interaction mediated by spin dimer in Cu$_2$Fe$_2$Ge$_4$O$_{13}$

155   0   0.0 ( 0 )
 Added by Takatsugu Masuda
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cu$_2$Fe$_2$Ge$_4$O$_{13}$ is a bicomponent compound that consists of Cu dimers and Fe chains with separate energy scale. By inelastic neutron scattering technique with high-energy resolution we observed the indirect Fe - Fe exchange coupling by way of the Cu dimers. The obtained parameters of the effective indirect interaction and related superexchange interactions are consistent with those estimated semi-statically. The consistency reveals that the Cu dimers play the role of nonmagnetic media in the indirect magnetic interaction.



rate research

Read More

141 - T. Masuda , K. Kakurai , 2009
We study $S=1/2$ dimer excitation in a coupled chain and dimer compound Cu$_2$Fe$_2$Ge$_4$O$_{13} by inelastic neutron scattering technique. The Zeeman split of the dimer triplet by a staggered field is observed at low temperature. With the increase of temperature the effect of random field is detected by a drastic broadening of the triplet excitation. Basic dynamics of dimer in the staggered and random fields are experimentally identified in Cu$_2$Fe$_2$Ge$_4$O$_{13}.
The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu$_2$Fe$_2$Ge$_4$O$_{13}$ are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.
101 - C. S. Lue , C. N. Kuo , T. H. Su 2006
We report the results of a $^{45}$Sc nuclear magnetic resonance (NMR) study on the quasi-one-dimensional compound Cu$_2$Sc$_2$Ge$_4$O$_{13}$ at temperatures between 4 and 300 K. This material has been a subject of current interest due to indications of spin gap behavior. The temperature-dependent NMR shift exhibits a character of low-dimensional magnetism with a negative broad maximum at $T_{max}$ $simeq $ 170 K. Below $% T_{max}$, the NMR shifts and spin lattice relaxation rates clearly indicate activated responses, confirming the existence of a spin gap in Cu$_2$Sc$_2$Ge% $_4$O$_{13}$. The experimental NMR data can be well fitted to the spin dimer model, yielding a spin gap value of about 275 K which is close to the 25 meV peak found in the inelastic neutron scattering measurement. A detailed analysis further points out that the nearly isolated dimer picture is proper for the understanding of spin gap nature in Cu$_2$Sc$_2$Ge$_4$O$_{13}$.
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presence of a magnetic dimerization concomitant with the tetragonal-to-triclinic structural distortion occurring below 125 K, neutron scattering experiments reveal the presence of dispersive triplet excitations above a spin gap of $Delta = 10.6$ meV at 1.5 K, a value consistent with the estimates extracted from magnetic susceptibility. The likely detection of these spin excitations in infrared spectroscopy is explained by invoking a dynamic Dzyaloshinskii-Moriya mechanism in which light is coupled to the dimer singlet-to-triplet transition through an optical phonon. These results are qualitatively explained by exact diagonalization and higher-order perturbation calculations carried out on the basis of the dimerized spin Hamiltonian derived from first-principles.
We report detailed neutron scattering studies on Ba$_2$Cu$_3$O$_4$Cl$_2$. The compound consists of two interpenetrating sublattices of Cu, labeled as Cu$_{rm A}$ and Cu$_{rm B}$, each of which forms a square-lattice Heisenberg antiferromagnet. The two sublattices order at different temperatures and effective exchange couplings within the sublattices differ by an order of magnitude. This yields an inelastic neutron spectrum of the Cu$_{rm A}$ sublattice extending up to 300 meV and a much weaker dispersion of Cu$_{rm B}$ going up to around 20 meV. Using a single-band Hubbard model we derive an effective spin Hamiltonian. From this, we find that linear spin-wave theory gives a good description to the magnetic spectrum. In addition, a magnetic field of 10 T is found to produce effects on the Cu$_{rm B}$ dispersion that cannot be explained by conventional spin-wave theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا