Do you want to publish a course? Click here

Tunable Field Induced Superconductivity

50   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the transport properties of a thin superconducting Al layer covering a square array of magnetic dots with out-of-plane magnetization. A thorough characterization of the magnetic properties of the dots allowed us to fine-tune their magnetic state at will, hereby changing the influence of the dots on the superconductor in a continuous way. We show that even though the number of vortex-antivortex pairs discretely increases with increasing the magnetization of the dots, no corresponding discontinuity is observed in the resistance of the sample. The evolution of the superconducting phase boundary as the magnetic state of the dots is swept permits one to devise a fully controllable and erasable field induced superconductor.



rate research

Read More

Using muon-spin rotation, we studied the in-plane (lambda_ab) and the out of plane (lambda_c) magnetic field penetration depth in SrFe_1.75Co_0.25As_2 (T_c=13.3 K). Both lambda_ab(T) and lambda_c(T) are consistent with the presence of two superconducting gaps with the gap to T_c ratios 2Delta/k_BT_c=7.2 and 2.7. The penetration depth anisotropy gamma_lambda=lambda_c/lambda_ab increases from gamma_lambda=2.1 at T_c to 2.7 at 1.6 K. The mean internal field in the superconducting state increases with decreasing temperature, just opposite to the diamagnetic response seen in magnetization experiments. This unusual behavior suggests that the external field induces a magnetic order which is maintained throughout the whole sample volume.
A small magnetic field is found to enhance relaxation processes in a superconductor thus stabilizing superconductivity in non-equilibrium conditions. In a normal-metal (N) - insulator - superconductor (S) tunnel junction, applying a field of the order of 100 mu T leads to significantly improved cooling of the N island by quasiparticle (QP) tunneling. These findings are attributed to faster QP relaxation within the S electrodes as a result of enhanced QP drain through regions with locally suppressed energy gap due to magnetic vortices in the S leads at some distance from the junction.
It is widely believed that topological superconductivity, a hitherto elusive phase of quantum matter, can be achieved by inducing superconductivity in topological materials. In search of such topological superconductors, certain topological insulators (like, Bi$_2$Se$_3$) were successfully turned into superconductors by metal-ion (Cu, Pd, Sr, Nb etc. ) intercalation. Superconductivity could be induced in topological materials through applying pressure as well. for example, a pressure-induced superconducting phase was found in the topological insulator Bi$_2$Se$_3$. However, in all such cases, no conclusive signature of topological superconductivity was found. In this review, we will discuss about another novel way of inducing superconductivity in a non-superconducting topological material -- by creating a mesoscopic interface on the material with a non-superconducting, normal metallic tip where the mesoscopic interface becomes superconducting. Such a phase is now known as a tip-induced superconducting (TISC) phase. This was first seen in 2014 on Cd$_3$As$_2$ at IISER Mohali, India. Following that, a large number of other topological materials were shown to display TISC. Since the TISC phase emerges only at a confined region under a mesoscopic point contact, traditional bulk tools for characterizing superconductivity cannot be employed to detect/confirm such a phase. On the other hand, such a point contact geometry is ideal for probing the possible existence of a temperature and magnetic field dependent superconducting energy gap and a temperature and magnetic field dependent critical current. We will review the details of the experimental signatures that can be used to prove the existence of superconductivity even when the text-book tests for detecting superconductivity cannot be performed. Then, we will review different systems where a TISC phase could be realized.
We present a detailed study of the temperature (T) and magnetic field (H) dependence of the electronic density of states (DOS) at the Fermi level, as deduced from specific heat and Knight shift measurements in underdoped YBa2Cu3Oy. We find that the DOS becomes field-independent above a characteristic field H_{DOS} and that the H_{DOS}(T) line displays an unusual inflection near the onset of the long range 3D charge-density wave order. The unusual S-shape of H_{DOS}(T) is suggestive of two mutually-exclusive orders that eventually establish a form of cooperation in order to coexist at low T. On theoretical grounds, such a collaboration could result from the stabilisation of a pair-density wave state, which calls for further investigations in this region of the phase diagram
We have studied the effect of a random superconducting order parameter on the localization of quasi-particles, by numerical finite size scaling of the Bogoliubov-de Gennes tight-binding Hamiltonian. Anderson localization is obtained in d=2 and a mobility edge where the states localize is observed in d=3. The critical behavior and localization exponent are universal within error bars both for real and complex random order parameter. Experimentally these results imply a suppression of the electronic contribution to thermal transport from states above the bulk energy gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا