No Arabic abstract
We report on magnetoconductance measurements of metallic networks of various sizes ranging from 10 to $10^{6}$ plaquettes, with anisotropic aspect ratio. Both Altshuler-Aronov-Spivak (AAS) $h/2e$ periodic oscillations and Aharonov-Bohm (AB) $h/e$ periodic oscillations are observed for all networks. For large samples, the amplitude of both oscillations results from the incoherent superposition of contributions of phase coherent regions. When the transverse size becomes smaller than the phase coherent length $L_phi$, one enters a new regime which is phase coherent (mesoscopic) along one direction and macroscopic along the other, leading to a new size dependence of the quantum oscillations.
We analyze dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads, where we recently predicted a crossover for the dephasing time $tPh(T)$ from diffusive or ergodic 1D ($tPh^{-1} propto T^{2/3}, T^{1}$) to $0D$ behavior ($tPh^{-1} propto T^{2}$) as $T$ drops below the Thouless energy $ETh$. We provide a detailed derivation of our results, based on an influence functional for quantum Nyquist noise, and calculate all leading and subleading terms of the dephasing time in the three regimes. Explicitly taking into account the Pauli blocking of the Fermi sea in the metal allows us to describe the $0D$ regime on equal footing as the others. The crossover to $0D$, predicted by Sivan, Imry and Aronov for 3D systems, has so far eluded experimental observation. We will show that for $T ll ETh$, $0D$ dephasing governs not only the $T$-dependence for the smooth part of the magnetoconductivity but also for the amplitude of the Altshuler-Aronov-Spivak oscillations, which result only from electron paths winding around the ring. This observation can be exploited to filter out and eliminate contributions to dephasing from trajectories which do not wind around the ring, which may tend to mask the $T^{2}$ behavior. Thus, the ring geometry holds promise of finally observing the crossover to $0D$ experimentally.
We study dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads. We use an influence functional for quantum Nyquist noise to describe the crossover for the dephasing time $Tph (T)$ from diffusive or ergodic 1D ($ Tph^{-1} propto T^{2/3}, T^{1}$) to 0D behavior ($Tph^{-1} propto T^{2}$) as $T$ drops below the Thouless energy. The crossover to 0D, predicted earlier for 2D and 3D systems, has so far eluded experimental observation. The ring geometry holds promise of meeting this longstanding challenge, since the crossover manifests itself not only in the smooth part of the magnetoconductivity but also in the amplitude of Altshuler-Aronov-Spivak oscillations. This allows signatures of dephasing in the ring to be cleanly extracted by filtering out those of the leads.
Transmission phase alpha measurements of many-electron quantum dots (small mean level spacing delta) revealed universal phase lapses by pi between consecutive resonances. In contrast, for dots with only a few electrons (large delta), the appearance or not of a phase lapse depends on the dot parameters. We show that a model of a multi-level quantum dot with local Coulomb interactions and arbitrary level-lead couplings reproduces the generic features of the observed behavior. The universal behavior of alpha for small delta follows from Fano-type antiresonances of the renormalized single-particle levels.
We compare a fully quantum mechanical numerical calculation of the conductivity of graphene to the semiclassical Boltzmann theory. Considering a disorder potential that is smooth on the scale of the lattice spacing, we find quantitative agreement between the two approaches away from the Dirac point. At the Dirac point the two theories are incompatible at weak disorder, although they may be compatible for strong disorder. Our numerical calculations provide a quantitative description of the full crossover between the quantum and semiclassical graphene transport regimes.
The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1$ mu$A carried by a billion electrons. By tuning the tunnel barrier between these states we see a cross-over from quantum to classical. Released from non-equilibrium, the system exhibits spontaneous coherent oscillations. For high barriers the lifetime of the states increases dramatically while the tunneling period approaches the phase coherence time and the classical regime is reached.