Do you want to publish a course? Click here

Limited resolution in complex network community detection with Potts model approach

69   0   0.0 ( 0 )
 Added by Jussi Kumpula
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

According to Fortunato and Barthelemy, modularity-based community detection algorithms have a resolution threshold such that small communities in a large network are invisible. Here we generalize their work and show that the q-state Potts community detection method introduced by Reichardt and Bornholdt also has a resolution threshold. The model contains a parameter by which this threshold can be tuned, but no a priori principle is known to select the proper value. Single global optimization criteria do not seem capable for detecting all communities if their size distribution is broad.



rate research

Read More

Detecting community structure in real-world networks is a challenging problem. Recently, it has been shown that the resolution of methods based on optimizing a modularity measure or a corresponding energy is limited; communities with sizes below some threshold remain unresolved. One possibility to go around this problem is to vary the threshold by using a tuning parameter, and investigate the community structure at variable resolutions. Here, we analyze the resolution limit and multiresolution behavior for two different methods: a q-state Potts method proposed by Reichard and Bornholdt, and a recent multiresolution method by Arenas, Fernandez, and Gomez. These methods are studied analytically, and applied to three test networks using simulated annealing.
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic phases in the quasiperiodic $q$-state Potts model in $2+1d$. Using a controlled real-space renormalization group approach, we find that the critical behavior is largely independent of $q$, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length exponent is found to be $ u=1$, saturating a modified version of the Harris-Luck criterion.
161 - F.W.S. Lima 2010
Through Monte Carlo simulations we study two-dimensional Potts models with $q=4, 6$ and 8 states on Voronoi-Delaunay random lattice. In this study, we assume that the coupling factor $J$ varies with the distance $r$ between the first neighbors as $J(r)propto e^{-a r}$, with $a geq 0$ . The disordered system is simulated applying the singler-cluster Monte Carlo update algorithm and reweigting technique. In this model both second-order and first-order phase transition are present depending of $q$ values and $a$ parameter. The critical exponents ratio $beta/ u$, $gamma/ u$, and $1/ u$ were calculated for case where the second-order phase transition are present. In the Potts model with $q=8$ we also studied the distribution of clusters sizes.
It is known that a trained Restricted Boltzmann Machine (RBM) on the binary Monte Carlo Ising spin configurations, generates a series of iterative reconstructed spin configurations which spontaneously flow and stabilize to the critical point of physical system. Here we construct a variety of Neural Network (NN) flows using the RBM and (variational) autoencoders, to study the q-state Potts and clock models on the square lattice for q = 2, 3, 4. The NN are trained on Monte Carlo spin configurations at various temperatures. We find that the trained NN flow does develop a stable point that coincides with critical point of the q-state spin models. The behavior of the NN flow is nontrivial and generative, since the training is unsupervised and without any prior knowledge about the critical point and the Hamiltonian of the underlying spin model. Moreover, we find that the convergence of the flow is independent of the types of NNs and spin models, hinting a universal behavior. Our results strengthen the potential applicability of the notion of the NN flow in studying various states of matter and offer additional evidence on the connection with the Renormalization Group flow.
We show that the recently introduced label propagation method for detecting communities in complex networks is equivalent to find the local minima of a simple Potts model. Applying to empirical data, the number of such local minima was found to be very high, much larger than the number of nodes in the graph. The aggregation method for combining information from more local minima shows a tendency to fragment the communities into very small pieces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا