Do you want to publish a course? Click here

Neural Network flows of low q-state Potts and clock Models

151   0   0.0 ( 0 )
 Added by Ching-Yu Huang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is known that a trained Restricted Boltzmann Machine (RBM) on the binary Monte Carlo Ising spin configurations, generates a series of iterative reconstructed spin configurations which spontaneously flow and stabilize to the critical point of physical system. Here we construct a variety of Neural Network (NN) flows using the RBM and (variational) autoencoders, to study the q-state Potts and clock models on the square lattice for q = 2, 3, 4. The NN are trained on Monte Carlo spin configurations at various temperatures. We find that the trained NN flow does develop a stable point that coincides with critical point of the q-state spin models. The behavior of the NN flow is nontrivial and generative, since the training is unsupervised and without any prior knowledge about the critical point and the Hamiltonian of the underlying spin model. Moreover, we find that the convergence of the flow is independent of the types of NNs and spin models, hinting a universal behavior. Our results strengthen the potential applicability of the notion of the NN flow in studying various states of matter and offer additional evidence on the connection with the Renormalization Group flow.



rate research

Read More

60 - D. Bolle , T. Verbeiren 2001
Starting from the mutual information we present a method in order to find a hamiltonian for a fully connected neural network model with an arbitrary, finite number of neuron states, Q. For small initial correlations between the neurons and the patterns it leads to optimal retrieval performance. For binary neurons, Q=2, and biased patterns we recover the Hopfield model. For three-state neurons, Q=3, we find back the recently introduced Blume-Emery-Griffiths network hamiltonian. We derive its phase diagram and compare it with those of related three-state models. We find that the retrieval region is the largest.
95 - D. Bolle , P. Kozlowski 2001
We show that for a particular choice of the coupling parameters the Ashkin-Teller spin-glass neural network model with the Hebb learning rule and one condensed pattern yields the same thermodynamic properties as the four-state anisotropic Potts-glass neural network model. This equivalence is not seen at the level of the Hamiltonians.
71 - D. Bolle , P. Kozlowski 1998
An Ashkin-Teller neural network, allowing for two types of neurons is considered in the case of low loading as a function of the strength of the respective couplings between these neurons. The storage and retrieval of embedded patterns built from the two types of neurons, with different degrees of (in)dependence is studied. In particular, thermodynamic properties including the existence and stability of Mattis states are discussed. Furthermore, the dynamic behaviour is examined by deriving flow equations for the macroscopic overlap. It is found that for linked patterns the model shows better retrieval properties than a corresponding Hopfield model.
The random field q-States Potts model is investigated using exact groundstates and finite-temperature transfer matrix calculations. It is found that the domain structure and the Zeeman energy of the domains resembles for general q the random field Ising case (q=2), which is also the expectation based on a random-walk picture of the groundstate. The domain size distribution is exponential, and the scaling of the average domain size with the disorder strength is similar for q arbitrary. The zero-temperature properties are compared to the equilibrium spin states at small temperatures, to investigate the effect of local random field fluctuations that imply locally degenerate regions. The response to field pertubabtions (chaos) and the susceptibility are investigated. In particular for the chaos exponent it is found to be 1 for q = 2,...,5. Finally for q=2 (Ising case) the domain length distribution is studied for correlated random fields.
The dynamics and the stationary states of an exactly solvable three-state layered feed-forward neural network model with asymmetric synaptic connections, finite dilution and low pattern activity are studied in extension of a recent work on a recurrent network. Detailed phase diagrams are obtained for the stationary states and for the time evolution of the retrieval overlap with a single pattern. It is shown that the network develops instabilities for low thresholds and that there is a gradual improvement in network performance with increasing threshold up to an optimal stage. The robustness to synaptic noise is checked and the effects of dilution and of variable threshold on the information content of the network are also established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا