Do you want to publish a course? Click here

Spin-valley phase diagram of the two-dimensional metal-insulator transition

126   0   0.0 ( 0 )
 Added by Oki Gunawan
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the systems valley and spin degrees of freedom and map out a spin-valley phase diagram for the 2D metal-insulator transition. The insulating phase occurs in the quadrant where the system is both spin- and valley-polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal-insulator transition.



rate research

Read More

We report the observation of a re-entrant insulator--metal--insulator transition at B=0 in a two dimensional (2D) hole gas in GaAs at temperatures down to 30mK. At the lowest carrier densities the holes are strongly localised. As the carrier density is increased a metallic phase forms, with a clear transition at sigma = ~5e^2/h. Further increasing the density weakens the metallic behaviour, and eventually leads to the formation of a second insulating state for sigma > ~50e^2/h. In the limit of high carrier densities, where k_F.l is large and r_s is small, we thus recover the results of previous work on weakly interacting systems showing the absence of a metallic state in 2D.
Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is an intrinsic local property, set by surface morphology and stable across multiple temperature cycles. Our data provides new insights into the MIT of heteroepitaxial nickelates and points to a rich, nanoscale phenomenology in this strongly correlated material.
The discovery of novel phases of matter is at the core of modern physics. In quantum materials, subtle variations in atomic-scale interactions can induce dramatic changes in macroscopic properties and drive phase transitions. Despite their importance, the mesoscale processes underpinning phase transitions often remain elusive because of the vast differences in timescales between atomic and electronic changes and thermodynamic transformations. Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3. Despite the ultrafast change in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale blocks govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the non-equilibrium structural phases play during electronic phase transitions in correlated electrons systems.
We explore the scaling description for a two-dimensional metal-insulator transition (MIT) of electrons in silicon. Near the MIT, $beta_{T}/p = (-1/p)d(ln g)/d(ln T)$ is universal (with $p$, a sample dependent exponent, determined separately; $g$--conductance, $T$--temperature). We obtain the characteristic temperatures $T_0$ and $T_1$ demarking respectively the quantum critical region and the regime of validity of single parameter scaling in the metallic phase, and show that $T_1$ vanishes as the transition is approached. For $T<T_1$, the scaling of the data requires a second parameter. Moreover, all of the data can be described with two-parameter scaling at all densities -- even far from the transition.
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا