Do you want to publish a course? Click here

AlAs 2D electrons in an antidot lattice: Electron pinball with elliptical Fermi contours

55   0   0.0 ( 0 )
 Added by Oki Gunawan
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report ballistic transport measurements in a two-dimensional electron system confined to an AlAs quantum well and patterned with square antidot lattices of period $a = $0.6, 0.8, 1.0 and 1.5 $mu$m. In this system two in-plane conduction-band valleys with elliptical Fermi contours are occupied. The low-field magneto-resistance traces exhibit peaks corresponding to the commensurability of the cyclotron orbits and the antidot lattice. From the dependence of the position of the peak associated with the smallest commensurate orbit on electron density and $a$, we deduce the ratio of the longitudinal and transverse effective masses $m_l/m_t=5.2pm 0.4$, a fundamental parameter for the anisotropic conduction bands in AlAs.



rate research

Read More

An AlAs two-dimensional electron system patterned with an anti-dot lattice exhibits a giant piezoresistance (GPR) effect, with a sign opposite to the piezoresistance observed in the unpatterned region. We trace the origin of this anomalous GPR to the non-uniform strain in the anti-dot lattice and the exclusion of electrons occupying the two conduction band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance (GMR) effect, with valley playing the role of spin and strain the role of magnetic field.
We report experimental results on a quantum point contact (QPC) device formed in a wide AlAs quantum well where the two-dimensional electrons occupy two in-plane valleys with elliptical Fermi contours. To probe the closely-spaced, one-dimensional electric subbands, we fabricated a point contact device defined by shallow-etching and a top gate that covers the entire device. The conductance versus top gate bias trace shows a series of weak plateaus at integer multiples of $2e^2/h$, indicating a broken valley degeneracy in the QPC and implying the potential use of QPC as a simple valley filter device. A model is presented to describe the quantized energy levels and the role of the in-plane valleys in the transport. We also observe a well-developed conductance plateau near $0.7x2e^2/h$ which may reflect the strong electron-electron interaction in the system.
93 - Lee C. Bassett 2019
In the integer quantum Hall (IQH) regime, an antidot provides a finite, controllable `edge of quantum Hall fluid that is an ideal laboratory for investigating the collective dynamics of large numbers of interacting electrons. Transport measurements of single antidots probe the excitation spectra of the antidot edge, and gate-defined antidot devices offer the flexibility to vary both the antidots dimensions and its couplings to extended IQH edge modes which serve as leads. We also use the spin-selectivity of the IQH edge modes to perform spin-resolved transport measurements, from which we can infer the antidot spin-structure. This thesis describes a combination of such transport experiments and related computational models designed to investigate the effects of electron-electron interactions in quantum antidots, with general implications for the physics of spin and charge in IQH systems.
We report the observation of commensurability oscillations in an AlAs two-dimensional electron system where two conduction-band valleys with elliptical in-plane Fermi contours are occupied. The Fourier power spectrum of the oscillations shows two frequency components consistent with those expected for the Fermi contours of the two valleys. From an analysis of the spectra we deduce $m_l/m_t=5.2pm0.5$ for the ratio of the longitudinal and transverse electron effective masses.
193 - S. Saha , M. Zelent , S. Finizio 2019
Magnetic skyrmions are particle-like chiral spin textures found in a magnetic film with out-of-planeanisotropy and are considered to be potential candidates as information carriers in next generationdata storage devices. Despite intense research into the nature of skyrmions and their dynamic prop-erties, there are several key challenges that still need to be addressed. In particular, the outstandingissues are the reproducible generation, stabilization and confinement of skyrmions at room tempera-ture. Here, we present a method for the capture of nanometer sized magnetic skyrmions in an arrayof magnetic topological defects in the form of an antidot lattice. With micromagnetic simulations,we elucidate the skyrmion formation in the antidot lattice and show that the capture is dependenton the antidot lattice parameters. This behavior is confirmed with scanning transmission x-ray mi-croscopy measurements. This demonstration that a magnetic antidot lattice can be implemented asa host to capture skyrmions provides a new platform for experimental investigations of skyrmionsand skyrmion based devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا