We have investigated the high field magnetisation of the frustrated one dimensional compound LiCuVO4. In zero field, LiCuVO4 undergoes long range antiferromagnetic order at T_{N} ~ 2.5 K with a broad short range Schottky type anomaly due to one dimensional correlations in the specific heat at 32 K. Application of a magnetic field induces a rich phase diagram. An anomaly in the derivative of the magnetisation with respect to the applied magnetic field is seen at ~ 7.5 T with H ll c in the long range order phase. We investigated this in terms of a first experimental evidence of a middle field cusp singularity (MFCS). Our numerical DMRG results show that in the parameter range of LiCuVO4 as deduced by inelastic neutron scattering (INS), there exists no MFCS. The anomaly in the derivative of the magnetisation at ~ 7.5 T is therfore assigned to a change in the spin structure from the ab plane helix seen in zero field neutron diffraction.
We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields.
A quantum magnet, LiCuSbO4, with chains of edge-sharing S = 1/2 CuO6 octahedra is reported. While the Curie-Weiss constant is ferromagnetic, theta = 30 K, no phase transition or spin freezing occurs down to 100 mK. Specific heat indicates a distinct high field phase near the 12 T saturation field. Neutron scattering shows incommensurate spin correlations with q = 0.47pm0.01{pi}/a and places an upper limit of 70 mueV on a potential spin gap. Exact diagonalization of easy plane S = 1/2 chains with competing ferro- and antiferromagnetic interactions (J1 = - 75 K, J2 = 34 K) accounts for the T > 2 K data.
Frustrated bilayer quantum magnets have attracted attention as flat-band spin systems with unconventional thermodynamic properties. We study the low-temperature properties of a frustrated honeycomb-lattice bilayer spin-$frac{1}{2}$ isotropic ($XXX$) Heisenberg antiferromagnet in a magnetic field by means of an effective low-energy theory using exact diagonalizations and quantum Monte Carlo simulations. Our main focus is on the magnetization curve and the temperature dependence of the specific heat indicating a finite-temperature phase transition in high magnetic fields.
Magnetization measurements on single-crystal cubic SrCuTe$_2$O$_6$ with an applied magnetic field of along three inequivalent high symmetry directions $[100]$, $[110]$, and $[111]$ reveal weak magnetic anisotropy. The fits of the magnetic susceptibility to the result from a quantum Monte Carlo simulation on the Heisenberg spin-chain model, where the chain is formed via the dominant third-nearest-neighbor exchange interaction $J_3$, yield the intra-chain interaction $(J_3/k_B)$ between 50.12(7) K for the applied field along $[110]$ and 52.5(2) K along $[100]$ with about the same $g$-factor of 2.2. Single-crystal neutron diffraction unveils the transition to the magnetic ordered state as evidenced by the onset of the magnetic Bragg intensity at $T_textrm{N1}=5.25(9)$ K with no anomaly of the second transition at $T_textrm{N2}$ reported previously. Based on irreducible representation theory and magnetic space group analysis of powder and single-crystal neutron diffraction data, the magnetic structure in the Shubnikov space group $P4_132$, where the Cu$^{2+}$~$S=1/2$ spins antiferromagnetically align in the direction perpendicular to the spin chain, is proposed. The measured ordered moment of $0.52(6)~mu_B$, which represents 48% reduction from the expected value of $1~mu_B$, suggests the remaining influence of frustration resulting from the $J_1$ and $J_2$ bonds.
Frustrated magnets in high magnetic field have a long history of offering beautiful surprises to the patient investigator. Here we present the results of extensive classical Monte Carlo simulations of a variety of models of two dimensional magnets in magnetic field, together with complementary spin wave analysis. Striking results include (i) a massively enhanced magnetocaloric effect in antiferromagnets bordering on ferromagnetic order, (ii) a route to an $m=1/3$ magnetization plateau on a square lattice, and (iii) a cascade of phase transitions in a simple model of AgNiO$_2$.
M. G. Banks
,F. Heidrich-Meisner
,A. Honecker
.
(2006)
.
"High field magnetisation of the frustrated one dimensional quantum antiferromagnet LiCuVO4"
.
Michael G. Banks
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا